Difference between revisions of "Catalog"

Line 8: Line 8:
 
*'''Browse''' [[Catalog#Browse user-supplied catalog pages|'''user-supplied catalog pages''']] - these pages have not undergone curation by the Registry but have been made by the Registry user community.  Please feel free to add new catalog pages to this section.
 
*'''Browse''' [[Catalog#Browse user-supplied catalog pages|'''user-supplied catalog pages''']] - these pages have not undergone curation by the Registry but have been made by the Registry user community.  Please feel free to add new catalog pages to this section.
 
----
 
----
 
===Browse parts by family===
 
Expression operating systems: A self-consistent collection of parts designed to advanced the forward engineering of gene expression at the genome scale.
 
 
 
===Browse parts by type===
 
===Browse parts by type===
 
{|width=800px
 
{|width=800px

Revision as of 16:19, 23 March 2011

< Back to Registry



Browse parts by type

Catalog List
RegistryListSmall.png Promoters (?): A promoter is a DNA sequence that tends to recruit transcriptional machinery and lead to transcription of the downstream DNA sequence.
RegistryListSmall.png Ribosome Binding Sites (?): A ribosome binding site (RBS) is an RNA sequence found in mRNA to which ribosomes can bind and initiate translation.
RegistryListSmall.png Protein domains (?): Protein domains are portions of proteins cloned in frame with other proteins domains to make up a protein coding sequence. Some protein domains might change the protein's location, alter its degradation rate, target the protein for cleavage, or enable it to be readily purified.
RegistryListSmall.png Protein coding sequences (?): Protein coding sequences encode the amino acid sequence of a particular protein. Note that some protein coding sequences only encode a protein domain or half a protein. Others encode a full-length protein from start codon to stop codon. Coding sequences for gene expression reporters such as LacZ and GFP are also included here.
Translational units (?): Translational units are composed of a ribosome binding site and a protein coding sequence. They begin at the site of translational initiation, the RBS, and end at the site of translational termination, the stop codon.
RegistryListSmall.png Terminators (?): A terminator is an RNA sequence that usually occurs at the end of a gene or operon mRNA and causes transcription to stop.
RegistryListSmall.png DNA (?): DNA parts provide functionality to the DNA itself. DNA parts include cloning sites, scars, primer binding sites, spacers, recombination sites, conjugative tranfer elements, transposons, origami, and aptamers.
RegistryListSmall.png Plasmid backbones (?): A plasmid is a circular, double-stranded DNA molecules typically containing a few thousand base pairs that replicate within the cell independently of the chromosomal DNA. A plasmid backbone is defined as the plasmid sequence beginning with the BioBrick suffix, including the replication origin and antibiotic resistance marker, and ending with the BioBrick prefix.
RegistryListSmall.png Plasmids (?): A plasmid is a circular, double-stranded DNA molecules typically containing a few thousand base pairs that replicate within the cell independently of the chromosomal DNA. If you're looking for a plasmid or vector to propagate or assemble plasmid backbones, please see the set of plasmid backbones. There are a few parts in the Registry that are only available as circular plasmids, not as parts in a plasmid backbone, you can find them here. Note that these plasmids largely do not conform to the BioBrick standard.
RegistryListSmall.png Primers (?): A primer is a short single-stranded DNA sequences used as a starting point for PCR amplification or sequencing. Although primers are not actually available via the Registry distribution, we include commonly used primer sequences here.
RegistryListSmall.png Composite parts (?): Composite parts are combinations of of two or more BioBrick parts.

Browse devices by type

We're in the process of developing new support for the specification of devices in the Registry. For the time being, please see the existing device tables below.

[[1]]
https://parts.igem.org/cgi/partsdb/pgroup.cgi?pgroup=Generator
Protein generators (?):
[[2]]
https://parts.igem.org/cgi/partsdb/pgroup.cgi?pgroup=reporter
Reporters (?):
[[3]]
https://parts.igem.org/cgi/partsdb/pgroup.cgi?pgroup=inverter
Inverters (?):
[[4]]
https://parts.igem.org/cgi/partsdb/pgroup.cgi?pgroup=Signalling
Receivers and senders (?):
[[5]]
https://parts.igem.org/cgi/partsdb/pgroup.cgi?pgroup=Measurement
Measurement devices (?):

Browse parts and devices by function

This section replaces the previous Featured parts pages.

Biosynthesis: Parts involved in the production or degradation of chemicals and metabolites are listed here.
Cell-cell signaling and quorum sensing: Parts involved in intercellular signaling and quorum sensing between bacteria.
Cell death: Parts involved in killing cells.
Coliroid: Parts involved in taking a bacterial photograph.
Conjugation: Parts involved in DNA conjugation between bacteria.
Motility and chemotaxis: Parts involved in motility or chemotaxis of cells.
Odor production and sensing: Parts the produce or sense odorants.
DNA recombination: Parts involved in DNA recombination.
Viral vectors: Parts involved in the production and modification of Viral vectors.

Browse parts and devices by chassis

Unless otherwise specified, most parts in the Registry work in Escherichia coli.

Catalog List
Escherichia coli (?): Most parts in the Registry function in E. coli.
RegistryListSmall.png Yeast (?): Yeast are simple eukaryotes.
RegistryListSmall.png Bacteriophage T7 (?): Bacteriophage T7 is an obligate lytic phage of E. coli.
Bacillus subtilis (?): Bacillus subtilis is a model gram-positive bacterium.

Browse parts and devices by standard

Unless otherwise specified, most parts in the Registry comply with the original BioBrick assembly standard (also known as Assembly standard 10).

Assembly standard 10 (?): Assembly standard 10, or the original BioBrick assembly standard, was developed by Tom Knight in 2003. Most parts in the Registry comply with this assembly standard.
Assembly standard 23 (?): Assembly standard 23, or the Silver standard, is compatible with original BioBrick assembly standard and allows for in-frame assembly of protein domains.
Assembly standard 25 (?): Assembly standard 25, or the Freiburg standard, extends upon the original BioBrick assembly standard and allows for in-frame assembly of protein domains.
Assembly standard 21 (?): Assembly standard 21, also known as the BglBrick, BBb, or Berkeley standard, is optimized to enable in-frame assembly of protein domains.
Assembly standard 28 (?): Assembly standard 28, also known as the Lim lab standard or AarI cloning, is optimized for assembly of 3 parts into a vector simultaneously. Most parts that comply with Assembly standard 28 function in yeast.
Assembly standard 15 (?): Julie Norville has developed a new set of parts for assembly of fusion proteins.

Please see [http://hdl.handle.net/1721.1/45137 BBF RFC 29] for naming conventions for standards of physical composition.

Browse parts and devices by contributor

iGEM 2010 | iGEM 2009 | iGEM 2008 | iGEM 2007 | iGEM 2006 | iGEM 2005 | Labs | Courses

Browse chassis

Looking for a particular strain? You can find it here.

Catalog List
RegistryListSmall.png Escherichia coli chassis (?): Most parts in the Registry operate in E. coli.
Bacillus subtilis chassis (?): Bacillus subtilis is a model gram-positive bacterium.
Cell-free chassis (?): In vitro transcription/translation systems can be useful for some synthetic biological systems.

Browse user-supplied catalog pages

These pages have not undergone curation by the Registry but have been made by the Registry user community. Please feel free to add new catalog pages to this section. Over time, high quality pages will be "promoted" to the primary Registry catalog collection.

Mesoplasma florum (?): Mesoplasma florum is a particularly simple model organism.