Other

Part:BBa_K2560001

Designed by: Daniel Stukenberg   Group: iGEM18_Marburg   (2018-08-13)


Phytobrick Entry Vector with RFP dropout

This plasmid can be used to create Phytobricks using a Golden Gate Reaction. A RFP dropout helps to distinguish between wrong colonies (red) and correct colonies (white)

Overview

All LVL0 parts have to be stored in plasmids to allow for amplification and long term storage. To create new LVL0 parts, a PCR product or annealed oligos are cloned into a part entry vector. This vector harbours the resistance and ori that are required for selection and propagation. Furthermore, part entry vectors can be designed in a way that they contain a dropout. This dropout can be a transcription unit for a marker that generates a visible output. The first golden-gate-based toolbox MoClo (Weber et al. 2011.) used a LacZ alpha transcription unit which can be used for blue white screening in many E. coli cloning strains. This concept was also adapted by iGEMs PhytoBrick system. During the cloning of LVL0 parts, this dropout is replaced by the desired part. When the cloning reaction is transformed into a suitable E. coli strain and the cells are plated on agar plates with supplemented IPTG and X-Gal. Colonies transformed with the religated entry plasmid appear blue while white colonies most probably contain the correctly assembled plasmid. The LVL0 part entry vector in iGEMs PhytoBrick system (BBa_P10500) has been designed as described and can be used for blue white screening.
We appreciate the approach of using part entry plasmids with dropouts but, for two reasons, we think that LacZ is not an optimal reporter. First, blue white screening requires the two expensive chemicals IPTG and X-Gal which have to be added to the agar plates. Second, blue white screening is restricted to E.coli strains with an incomplete lac operon that is complemented by the LacZ alpha fragment that is expressed from the plasmid (Langley et al. 1975.) . Consequently blue white screening is not compatible with a V. natriegens wild type strain (Link zu Improvement Page).

Sequence and Features

Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal SpeI site found at 51
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 21
    Illegal NheI site found at 44
    Illegal SpeI site found at 51
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal SpeI site found at 51
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal SpeI site found at 51
    Illegal AgeI site found at 630
    Illegal AgeI site found at 742
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 1
    Illegal BsaI.rc site found at 927
    Illegal SpeI site found at 51


Marburg Toolbox

We proudly present the Marburg Collection, a novel golden-gate-based toolbox containing various parts that are compatible with the PhytoBrick system and MoClo. Compared to other bacterial toolboxes, the Marburg Collection shines with superior flexibility. We overcame the rigid paradigm of plasmid construction - thinking in fixed backbone and insert categories - by achieving complete de novo assembly of plasmids.

36 connectors facilitate flexible cloning of multigene constructs and even allow for the inversion of individual transcription units. Additionally, our connectors function as insulators to avoid undesired crosstalk.

The Marburg Collection contains 123 parts in total, including:
inducible promoters, reporters, fluorescence and epitope tags, oris, resistance cassettes and genome engineering tools. To increase the value of the Marburg Collection, we additionally provide detailed experimental characterization for V. natriegens and a supportive software. We aspire availability of our toolbox for future iGEM teams to empower accelerated progression in their ambitious projects.


Figure 3: Hierarchical cloning is facilitated by subsequent Golden Gate reactions.
Basic building blocks like promoters or terminators are stored in level 0 plasmids. Parts from each category of our collection can be chosen to built level 1 plasmids harboring a single transcription unit. Up to five transcription units can be assembled into a level 2 plasmid.
Figure 4: Additional bases and fusion sites ensure correct spacing and allow tags.
Between some parts, additional base pairs were integrated to ensure correct spacing and to maintain the triplet code. We expanded our toolbox by providing N- and C- terminal tags by creating novel fusions and splitting the CDS and terminator part, respectively.


Parts of the Marburg Toolbox




Tags and Entry Vectors




  • K2560001 (Entry Vector with RFP dropout)
  • K2560002 (Entry Vector with GFP dropout)
  • K2560005 (Resistance Entry Vector with RFP Dropout)
  • K2560006 (Resistance Entry Vector with GFP Dropout)
  • K2560305 (gRNA Entry Vector with GFP Dropout)
[edit]
Categories
Parameters
None