Generator

Part:BBa_K325219:ArabinosetoLight

Designed by: Bill Collins and Emily Knott   Group: iGEM10_Cambridge   (2010-09-15)
Revision as of 14:28, 24 September 2010 by PM (Talk | contribs) (Data)

Input: L-Arabinose
Output: Light

pBad/araC
I0500
Luciferase/LRE
K325210
Cambridge-Eglowli.png

Part Main Page        Arabinose -> Light        Add Data       


Description

This page describes the relationship between Arabinose concentration in the medium with light output. We used a [http://www.bmglabtech.com/products/microplate-reader/instruments.cfm?product_id=2 FLUOstar OPTIMA] microplate reader to quantify the light output. Protocol and plate reader settings used are given below.

Data

Figure 1 - Transfer function of BBa_K325219. The data points represent the mean of 3 individual measurements. The corresponding error bars represent an interval of twice the standard deviation centred around the mean value. The values were obtained by integrating the light output obtained between 300 and 500 min after injection of D-Luciferin.


Performance

Experiment1 Characteristic1 Value1
Transfer Function Maximum Output 6.6 PoPS cell-1
Hill coefficient 1.6
Switch Point 1.5E-9 M 3OC6HSL, exogenous
Response time: <1 min
Input compatibility Strong response to 3OC6HSL, C6HSL , C7HSL, 3OC8HSL, C8HSL
Weak response to C4HSL, C10HSL, C12HSL
Stability Genetic Stability
(Low/High Input)
>92/>56 generations
Performance Stability
(Low/High Input)
>92/>56 generations
Demand Internal Demand
(Low/High Input)
Not measured
Transcriptional output demand:
(Low/High Input)
Nt = length of downstream transcript in nucleotides
(0/6xNt) nucleotides cell-1 s-1
(0/1.5E-1xNt) RNAP cell-1
Growth Rate
(Low/High Input)
54/59 min Doubling time

1Measured by the [http://2010.igem.org/Team:Cambridge Cambridge iGEM team 2010]

Compatibility
Chassis: Device has been shown to work in Top 10 (Invitrogen)
Plasmids: Device has been shown to work on pSB1C3


References
[http://www.ncbi.nlm.nih.gov/pubmed/18949818 [1]:] S.M. Marques and J.C.G. Esteves da Silva, (2009) Firefly Bioluminescence: A Mechanistic Approach of Luciferase Catalyzed Reactions,Life 61, 6-17.

[http://www.nature.com/nature/journal/v440/n7082/abs/nature04542.html [2]:] T. Nakatsu et al. (2006) Structural Basis for the spectral difference in luciferase bioluminescence, Nature 440(16), 372-376.

[http://www.ncbi.nlm.nih.gov/pubmed/11457857 [3]:] K. Gomi and N. Kajiyama, (2001) Oxyluciferin, a Luminescence Product of Firefly Luciferase, Is Enzymatically Regenerated into Luciferin, The Journal of Biological Chemistry, 276(39), 36508-36513.