Part:BBa_K4813005
J23100 - dTomato red chromoprotein strong expression construct
This composite component comprises several elements, including a constitutive strong promoter (BBa_J23100), a strong ribosome binding site (BBa_B0034), an E. coli codon-optimized chromoprotein and red fluorescent protein dTomato coding sequence (BBa_K4813000), and a strong double terminator (BBa_B0015). Additionally, the 5' and 3' ends of the composite part feature a 20 base pair overlap sequence designed for the pUC19 EcoRI restriction site for NEBuilder HiFi assembly.
Our project aims to create a formaldehyde-sensing reporter. This composite part served three purposes:
1. Comparing expression levels of dTomato and tdTomato chromoproteins.
2. Providing a reference for expression levels in our formaldehyde-sensing reporter (BBa_K4813002).
3. Acting as a positive control for the assembly process. The colonies expressing this construct will be red in colour.
Usage and Biology
Comparing the colouration of optimized dTomato BBa_K4813000 and tdTomato BBa_K4813001
Although the fluorescence protein database suggests that tdTomato has better fluorescence emission compared to dTomato [2], it does not provide information about their chromoprotein properties. Since our project aims to create a user-friendly device for monitoring formaldehyde levels without requiring specialized equipment, we are looking for a chromoprotein that produces a more visible color to the naked eye.
To address this, we have generated two composite parts, this one expressing the dTomato coding sequence(BBa_K4813002) and the other expressing tdTomato coding sequence (BBa_K4813004), and subsequently compared the colors of these two constructs as observed by the naked eye.
The bacterial colonies expressing this construct on the LB/Amp agar plates (Fig. 1) exhibited a deeper red color compared to those expressing tdTomato (Fig. 2) . We hypothesized that it is due to the larger size of tdTomato (which is composed of two dTomato proteins) may require more energy for expression by the E. coli cells. As a result, this increased energy demand potentially leads to a slower growth rate of the cells expressing tdTomato and a lower overall protein expression level within the colonies. To confirm our hypothesis, further investigation will be necessary.
Consequently, we chose this construct for the functional assay, as it proved to be more obvious in detecting the change of colour in E. coli with the presence of formaldehyde.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 27
Illegal NheI site found at 50 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
None |