Part:BBa_K2333407
UNS J23100 sfGFP pdt A
This part is designed to facilitate easy measurement of the strength of protein degradation tag (pdt) A by measuring time to steady-state fluorescence values of sfGFP under the control of the strong constitutive promoter J23100. William and Mary iGEM 2017 used pdts as a method to control gene expression speed.This part was utilized to characterize the degradation properties of pdt A and confirm the fact that different pdts have different degradation strengths. See [http://2017.igem.org/Team:William_and_Mary/Results William and Mary's 2017 project] for more details. This part is one of a series of sfGFP reporter pdt parts. Series range is from BBa_K2333401 to BBa_K2333406.
Usage and Biology
Protein degradation tag A is the strongest of the 6 protein degradation tags that William and Mary 2017 characterized, and is associated with the E. Coli orthogonal protease mf-Lon (BBa_K2333011). Therefore this part has the greatest degradation rate of the 6 protein degradation tags and it reaches steady-state fluorescence values the quickest. This part contains J23100 constitutive promoter, BBa_B0034 (RBS),pdt A, a double stop codon and BBa_B0015 (double terminator) in the William and Mary iGEM Universal Nucleotide Sequences (UNS) format. The sfGFP reporters have been codon-optimized for E. coli and feature a double stop codon for enhanced efficiency. In order to demonstrate that protein degradation tags operated similarily regardless of the tagged protein, sfGFP reporters that were analogous to the mScarlet-I parts (BBa_K2333413 to BBa_K2333419) were built and characterized. This demonstrates that the protein degradation tags are modular and that they have differential strengths even when they are tagged on different proteins.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 47
Illegal NheI site found at 70 - 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 106
References
[1] Torella JP, Boehm CR, Lienert F, Chen J-H, Way JC, Silver PA. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Research. 2013;42(1):681–689.
[2] Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nature Biotechnology. 2014;32(12):1276–1281.
None |