Composite
Part:BBa_K1758313
Designed by: Team Bielefeld-CeBiTec 2015 Group: iGEM15_Bielefeld-CeBiTec (2015-08-30)
Usage and Biology
Our sensor for chromium detection consists of chrB the repressor and the chromate specific promoter chrP. The promoter is regulated by the chrP, used for in vivo characterization , which binds Cr-ions. Behind the promoter is a sfGFP for detection of a fluorescence signal.
In vivo we could show that the addition of different concentrations of chromium have different effects to transcription of sfGFP. e used this repressor for our chromium sensor. Originaly its from Ochrobactrum triti ci5bvl1. We codon optimized it for use in E.coli. It is essential for our chromium sensor device BBa_K1758310. In combination with BBa_K1758312,BBa_K1758314 This part is used as our in vivo cerates our chromium sensor.Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 55
Illegal NheI site found at 966
Illegal NheI site found at 989 - 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1144
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 124
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 1237
Results
Our sensors were cultivated in the BioLector. Due to the accuracy of this device we could measure our sample in duplicates.
Our data lead to the conclusion that in a cell based system it is possible to detect chromium. In contrast to our expectations with higher chromium concentrations we got lower fluorescence levels. These observations needed further investigation.
[edit]
Categories
Parameters
//function/sensor/metal
None |