Difference between revisions of "Part:BBa K5115035"
Line 6: | Line 6: | ||
__TOC__ | __TOC__ | ||
===Introduction=== | ===Introduction=== | ||
− | This composite part is composed of MTA | + | This composite part is composed of MTA coding sequence (CDS), wrapped by ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting [https://parts.igem.org/Part:BBa_K4765020 BBa_K4765020] before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA.<ref>Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.</ref> To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS.<ref>Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.</ref> In 2023, we extensively tested various [https://2023.igem.wiki/fudan/part-collection/#ribozyme-assisted-polycistronic-co-expression stem-loops] using [https://parts.igem.org/Part:BBa_K4765129 BBa_K4765129]. For parts we made this year, this strong protective stem-loop sequence was used. |
− | + | ||
+ | As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used [https://parts.igem.org/Part:BBa_K4162006 T7 RBS], from bacteriophage T7 gene 10.<ref>The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Olins PO, Devine CS, Rangwala SH, Kavka KS. Gene, 1988 Dec 15;73(1):227-35.</ref> It is an intermediate strength RBS according to [https://2022.igem.wiki/fudan/measurement#optimization our 2022 results], which allows us to change it to a weaker [https://parts.igem.org/Part:BBa_J61100 J6 RBS] or a stronger [https://parts.igem.org/Part:BBa_B0030 B0 RBS] if needed, enabling flexible protein expression levels between various ribozyme connected parts. | ||
+ | |||
+ | The Metallothioneins (MTA) are intracellular, low molecular, low molecular weight, cysteine-rich proteins. Ubiquitous in eukaryotes, MTA has unique structural characteristics to give potent metal-binding and redox capabilities.<ref>Coyle, P., Philcox, J. C., Carey, L. C., & Rofe, A. M. (2002). Metallothionein: The multipurpose protein. Cellular and Molecular Life Sciences: CMLS, 59(4), 627–647.</ref> | ||
+ | |||
===Usage and Biology=== | ===Usage and Biology=== | ||
The heterologously expressed codon-optimized MTA can endowing ''E.coli'' with detoxifying capability. | The heterologously expressed codon-optimized MTA can endowing ''E.coli'' with detoxifying capability. |
Revision as of 03:57, 1 October 2024
ribozyme+RBS+MTA+stem-loop
Introduction
This composite part is composed of MTA coding sequence (CDS), wrapped by ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting BBa_K4765020 before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA.[1] To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS.[2] In 2023, we extensively tested various stem-loops using BBa_K4765129. For parts we made this year, this strong protective stem-loop sequence was used.
As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used T7 RBS, from bacteriophage T7 gene 10.[3] It is an intermediate strength RBS according to our 2022 results, which allows us to change it to a weaker J6 RBS or a stronger B0 RBS if needed, enabling flexible protein expression levels between various ribozyme connected parts.
The Metallothioneins (MTA) are intracellular, low molecular, low molecular weight, cysteine-rich proteins. Ubiquitous in eukaryotes, MTA has unique structural characteristics to give potent metal-binding and redox capabilities.[4]
Usage and Biology
The heterologously expressed codon-optimized MTA can endowing E.coli with detoxifying capability.
Get details in BBa_K5115050
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 198
- 1000COMPATIBLE WITH RFC[1000]
References
- ↑ Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.
- ↑ Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.
- ↑ The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Olins PO, Devine CS, Rangwala SH, Kavka KS. Gene, 1988 Dec 15;73(1):227-35.
- ↑ Coyle, P., Philcox, J. C., Carey, L. C., & Rofe, A. M. (2002). Metallothionein: The multipurpose protein. Cellular and Molecular Life Sciences: CMLS, 59(4), 627–647.