Difference between revisions of "Part:BBa K5115015"

 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
<partinfo>BBa_K5115015 short</partinfo>
 
<partinfo>BBa_K5115015 short</partinfo>
  
<html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2023"></html>
+
<html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2024"></html>
 
__TOC__
 
__TOC__
 
===Introduction===
 
===Introduction===
This composite part is composed of hoxW and improved ribozyme-assisted polycistronic co-expression system: pRAP. The hoxW is a subunit of the hydrogenase made up by hox and hyp, get details about hoxW in  [https://parts.igem.org/Part:BBa_K5115020 BBa_K5115020(hox and hyp operon)]. This composite part will finally be used in [https://parts.igem.org/Part:BBa_K5115066 BBa_K5115066(mineral, U module)]and [https://parts.igem.org/Part:BBa_K5115067 BBa_K5115067(mineral, F module)]for further experiment.
+
This composite part is composed of hoxW coding sequence (CDS), wrapped by ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting [https://parts.igem.org/Part:BBa_K4765020 BBa_K4765020] before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA<ref>Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.</ref>. To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS<ref>Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.</ref>. In 2023, we extensively tested various [https://2023.igem.wiki/fudan/part-collection/#ribozyme-assisted-polycistronic-co-expression stem-loops] using [https://parts.igem.org/Part:BBa_K4765129 BBa_K4765129]. For parts we made this year, this strong protective stem-loop sequence was used.
  
===Usage and Biology===
+
As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used [https://parts.igem.org/Part:BBa_K4162006 T7 RBS], from bacteriophage T7 gene 10<ref>The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in ''Escherichia coli''. Olins PO, Devine CS,  Rangwala SH,  Kavka KS. Gene, 1988 Dec 15;73(1):227-35.</ref>. It is an intermediate strength RBS according to [https://2022.igem.wiki/fudan/measurement#optimization our 2022 results], which allows us to change it to a weaker [https://parts.igem.org/Part:BBa_J61100 J6 RBS] or a stronger [https://parts.igem.org/Part:BBa_B0030 B0 RBS] if needed, enabling flexible protein expression levels between various ribozyme connected parts.
The ribozyme-assisted polycistronic co-expression system can ensure that each cistron can initiate translation with comparable efficiency. For more information, please check [https://2022.igem.wiki/fudan/parts part wiki of 2022 Fudan iGEM].
+
  
 +
The hoxW is a hydrogenase subunit which assists the enzyme's function and stability.
 +
 +
===Usage and Biology===
 +
The hoxW can help with the overall function of Ni-Fe hydrogenase.
  
 +
Get details in [https://parts.igem.org/Part:BBa_K5115063 BBa_K5115063].
  
  
 +
===Sequence and Features===
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>

Latest revision as of 07:51, 2 October 2024


ribozyme+RBS+hoxW+stem-loop

contributed by Fudan iGEM 2024

Introduction

This composite part is composed of hoxW coding sequence (CDS), wrapped by ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting BBa_K4765020 before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA[1]. To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS[2]. In 2023, we extensively tested various stem-loops using BBa_K4765129. For parts we made this year, this strong protective stem-loop sequence was used.

As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used T7 RBS, from bacteriophage T7 gene 10[3]. It is an intermediate strength RBS according to our 2022 results, which allows us to change it to a weaker J6 RBS or a stronger B0 RBS if needed, enabling flexible protein expression levels between various ribozyme connected parts.

The hoxW is a hydrogenase subunit which assists the enzyme's function and stability.

Usage and Biology

The hoxW can help with the overall function of Ni-Fe hydrogenase.

Get details in BBa_K5115063.


Sequence and Features

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 259
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References

  1. Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.
  2. Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.
  3. The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Olins PO, Devine CS, Rangwala SH, Kavka KS. Gene, 1988 Dec 15;73(1):227-35.