Difference between revisions of "Part:BBa K5115018"
(4 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K5115018 short</partinfo> | <partinfo>BBa_K5115018 short</partinfo> | ||
− | <html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM | + | <html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2024"></html> |
__TOC__ | __TOC__ | ||
===Introduction=== | ===Introduction=== | ||
+ | This composite part is composed of hypB coding sequence (CDS), wrapped by ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting [https://parts.igem.org/Part:BBa_K4765020 BBa_K4765020] before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA<ref>Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.</ref>. To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS<ref>Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.</ref>. In 2023, we extensively tested various [https://2023.igem.wiki/fudan/part-collection/#ribozyme-assisted-polycistronic-co-expression stem-loops] using [https://parts.igem.org/Part:BBa_K4765129 BBa_K4765129]. For parts we made this year, this strong protective stem-loop sequence was used. | ||
− | + | As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used [https://parts.igem.org/Part:BBa_K4162006 T7 RBS], from bacteriophage T7 gene 10<ref>The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in ''Escherichia coli''. Olins PO, Devine CS, Rangwala SH, Kavka KS. Gene, 1988 Dec 15;73(1):227-35.</ref>. It is an intermediate strength RBS according to [https://2022.igem.wiki/fudan/measurement#optimization our 2022 results], which allows us to change it to a weaker [https://parts.igem.org/Part:BBa_J61100 J6 RBS] or a stronger [https://parts.igem.org/Part:BBa_B0030 B0 RBS] if needed, enabling flexible protein expression levels between various ribozyme connected parts. | |
− | === | + | The hypB is a hydrogenase subunit which cooperates with hypA to precisely guide and insert the nickel ions into the hydrogenase catalytic center<ref> Anne K. Jones, Oliver Lenz, Angelika Strack, Thorsten Buhrke, and, & Friedrich*, B. (2004, October 2). NiFe Hydrogenase Active Site Biosynthesis: Identification of Hyp Protein Complexes in Ralstonia eutropha† (world) [Research-article]. ACS Publications; American Chemical Society.</ref>. |
+ | |||
+ | ===Usage and Biology=== | ||
+ | The hypB can help with the overall function of Ni-Fe hydrogenase. | ||
+ | Get details in [https://parts.igem.org/Part:BBa_K5115063 BBa_K5115063]. | ||
+ | ===Sequence and Features=== | ||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> |
Latest revision as of 09:15, 2 October 2024
ribozyme+RBS+hypB+stem-loop
Introduction
This composite part is composed of hypB coding sequence (CDS), wrapped by ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting BBa_K4765020 before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA[1]. To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS[2]. In 2023, we extensively tested various stem-loops using BBa_K4765129. For parts we made this year, this strong protective stem-loop sequence was used.
As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used T7 RBS, from bacteriophage T7 gene 10[3]. It is an intermediate strength RBS according to our 2022 results, which allows us to change it to a weaker J6 RBS or a stronger B0 RBS if needed, enabling flexible protein expression levels between various ribozyme connected parts.
The hypB is a hydrogenase subunit which cooperates with hypA to precisely guide and insert the nickel ions into the hydrogenase catalytic center[4].
Usage and Biology
The hypB can help with the overall function of Ni-Fe hydrogenase.
Get details in BBa_K5115063.
Sequence and Features
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 411
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 100
Illegal NgoMIV site found at 946
Illegal AgeI site found at 898 - 1000COMPATIBLE WITH RFC[1000]
References
- ↑ Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.
- ↑ Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.
- ↑ The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Olins PO, Devine CS, Rangwala SH, Kavka KS. Gene, 1988 Dec 15;73(1):227-35.
- ↑ Anne K. Jones, Oliver Lenz, Angelika Strack, Thorsten Buhrke, and, & Friedrich*, B. (2004, October 2). NiFe Hydrogenase Active Site Biosynthesis: Identification of Hyp Protein Complexes in Ralstonia eutropha† (world) [Research-article]. ACS Publications; American Chemical Society.