Difference between revisions of "Part:BBa K1151001"

(PCR with VF2 and VR2 primers)
(Improved by Fudan iGEM 2024)
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 +
<html><img style="float:left;width:64px;margin-right:2em" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2024"></html>
 +
 +
===Improved by Fudan iGEM 2024===
 +
This part is called Hpn for short. The His-rich putative nickel storage protein plays a crucial role in nickel detoxification. Hpn may sequester metals that accumulate internally via a passive equilibrium mechanism (from a high external metals environment).<ref>Maier, R. J., Benoit, S. L., & Seshadri, S. (2007). Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 20(3–4), 655–664.</ref> The Hpn working with [https://parts.igem.org/Part:BBa_K5115000 BBa_K5115000 (RcnR_C35L)] and [https://parts.igem.org/Part:BBa_K5115050 BBa_K5115050 (MTA)], together they can trick bacteria to aggressively absorb nickel ion from the environment, as well as reducing the harm nickel brings to the bacteria.
 +
 +
====Improved part====
 +
Our improved part is [https://parts.igem.org/Part:BBa_K5115036 BBa_K5115036 (Ribozyme + RBS + Hpn + stem-loop)]. We wrapped Hpn coding sequence with ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting [https://parts.igem.org/Part:BBa_K4765020 BBa_K4765020] before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA.<ref>Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.</ref> To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS.<ref>Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.</ref> In 2023, we extensively tested various [https://2023.igem.wiki/fudan/part-collection/#ribozyme-assisted-polycistronic-co-expression stem-loops] using [https://parts.igem.org/Part:BBa_K4765129 BBa_K4765129].
 +
 +
As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used [https://parts.igem.org/Part:BBa_K4162006 T7 RBS], from bacteriophage T7 gene 10.<ref>The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Olins PO,  Devine CS,  Rangwala SH,  Kavka KS. Gene, 1988 Dec 15;73(1):227-35.</ref> It is an intermediate strength RBS according to [https://2022.igem.wiki/fudan/measurement#optimization our 2022 results], which allows us to change it to a weaker [https://parts.igem.org/Part:BBa_J61100 J6 RBS] or a stronger [https://parts.igem.org/Part:BBa_B0030 B0 RBS] if needed.
 +
 +
<br>
 +
<br>
 
<partinfo>BBa_K1151001 short</partinfo>
 
<partinfo>BBa_K1151001 short</partinfo>
  
Line 10: Line 22:
  
  
[[File:boiling.jpg]]
+
[[File:boilingUnisalento.jpg]]
  
 
'''Figure 1:''' Digestion result of boiling prep plasmids.
 
'''Figure 1:''' Digestion result of boiling prep plasmids.
Line 16: Line 28:
 
===PCR with VF2 and VR2 primers===
 
===PCR with VF2 and VR2 primers===
  
                                     [[File:PCRVF21.jpg]]
+
                                     [[File:PCRVF21Unisalento.jpg]]
  
 
'''Figure 2:''' PCR results.
 
'''Figure 2:''' PCR results.

Latest revision as of 12:18, 2 October 2024

contributed by Fudan iGEM 2024

Improved by Fudan iGEM 2024

This part is called Hpn for short. The His-rich putative nickel storage protein plays a crucial role in nickel detoxification. Hpn may sequester metals that accumulate internally via a passive equilibrium mechanism (from a high external metals environment).[1] The Hpn working with BBa_K5115000 (RcnR_C35L) and BBa_K5115050 (MTA), together they can trick bacteria to aggressively absorb nickel ion from the environment, as well as reducing the harm nickel brings to the bacteria.

Improved part

Our improved part is BBa_K5115036 (Ribozyme + RBS + Hpn + stem-loop). We wrapped Hpn coding sequence with ribozyme-assisted polycistronic co-expression system (pRAP) sequences. By inserting BBa_K4765020 before CDS, the RNA of Twister ribozyme conduct self-cleaving in the mRNA.[2] To protect the mono-cistron mRNA from degradation, a stem-loop structure is placed at the 3' end of CDS.[3] In 2023, we extensively tested various stem-loops using BBa_K4765129.

As for the ribosome binding sequence (RBS) after the ribozyme and before the CDS, we used T7 RBS, from bacteriophage T7 gene 10.[4] It is an intermediate strength RBS according to our 2022 results, which allows us to change it to a weaker J6 RBS or a stronger B0 RBS if needed.



Histidine-rich metal-binding protein

So called for emphasize its origins in Helicobacter pylori and its avidity for nickel. Consisting of 60 aminoacids, the protein is rich in histidine (28 residues, 46.7 %) and contains short repeating motifs, it exists as an equilibration of multimeric forms in solution, with 20-mers (approx. 136 kDa) being the predominant species. Hpn can bind tightly and reversibly up to five Ni2+ ions per each monomer of 7 kDa in a pH-dependent manner (pH 7.4 ). In H. pylori play an important role in storing nickel required to the survival of the bacterium.

Boiling prep and digestion with restriction enzymes

Once inserted the gene coding for Hpn in a PSB1C3 plasmid (digestion and ligation), we transformed DH5a cells with the construct and then we recovered the ligated plasmid by boiling prep. We then proceeded with the digestion with EcoRI and PstI to check.


BoilingUnisalento.jpg

Figure 1: Digestion result of boiling prep plasmids.

PCR with VF2 and VR2 primers

                                    PCRVF21Unisalento.jpg

Figure 2: PCR results.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


  1. Maier, R. J., Benoit, S. L., & Seshadri, S. (2007). Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 20(3–4), 655–664.
  2. Eiler, D., Wang, J., & Steitz, T. A. (2014). Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences, 111(36), 13028–13033.
  3. Liu, Y., Wu, Z., Wu, D., Gao, N., & Lin, J. (2022). Reconstitution of Multi-Protein Complexes through Ribozyme-Assisted Polycistronic Co-Expression. ACS Synthetic Biology, 12(1), 136–143.
  4. The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Olins PO, Devine CS, Rangwala SH, Kavka KS. Gene, 1988 Dec 15;73(1):227-35.