Generator
B-carotene

Part:BBa_K343006:Design

Designed by: Christian Kurtzhals   Group: iGEM10_SDU-Denmark   (2010-10-14)
Revision as of 17:32, 26 October 2010 by CKurtzhals (Talk | contribs) (References)

Expresses B-carotene monooxygenase on a constitutive promotor


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 765
    Illegal BamHI site found at 500
    Illegal BamHI site found at 1757
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 1361
    Illegal BsaI site found at 1809


Design Notes

1. Source and function

The gene was cloned from Drosophila melanogaster cDNA aquired from Drosophila Genomic Resource Center. The normal function of the gene is to create beta-caroten 15'15-monooxygenase as outlined above. The function of this gene has been characterized in the literature.

2. Modifications before assembly

Appart from addition of BioBrick prefix/suffix no changes were made to the DNA before inserting it into E. coli.

3. Choice of additional parts

We have chosen the J13002 promotr+rbs to avoid both having to ligate promotor and rbs seperately. The B0015 dual terminator because of good experiences from earlier teams.

4. Vector

The gene was inserted into a pSB1C3 backbone.

5. Safety considderations

We considered the gene, the strains of E. coli and plasmids used as safe.


References

  1. ENZYME entry 1.14.99.36 [Internet]. [cited 2010 Oct 13];Available from: http://www.expasy.org/cgi-bin/nicezyme.pl?1.14.99.36
  2. von Lintig J, Dreher A, Kiefer C, Wernet MF, Vogt K. Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2001 Jan 30;98(3):1130 -1135.
  3. Retinal - Wikipedia, the free encyclopedia [Internet]. [cited 2010 Oct 13];Available from: http://en.wikipedia.org/wiki/Retinal
  4. Part:BBa K274210 - parts.igem.org [Internet]. [cited 2010 Oct 13];Available from: https://parts.igem.org/Part:BBa_K274210
  5. Bryant DA, Frigaard N. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 2006 Nov;14(11):488-496.
  6. Retinaldehyde - PubChem Public Chemical Database [Internet]. [cited 2010 Oct 13];Available from: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=1070
  7. ninaB neither inactivation nor afterpotential B [Drosophila melanogaster] - Gene result [Internet]. [cited 2010 Oct 13];Available from: http://www.ncbi.nlm.nih.gov/gene/41678
  8. von Lintig J, Vogt K. Filling the Gap in Vitamin A Research. Journal of Biological Chemistry. 2000 Apr 21;275(16):11915 -11920.
  9. ENZYME: 1.14.99.36 [Internet]. [cited 2010 Oct 13];Available from:http://www.genome.jp/dbget-bin/www_bget?ec:1.14.99.36
  10. Kelley LA & Sternberg MJE. Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols. 4, 363 - 371 (2009).
  11. Spiegl N, Didichenko S, McCaffery P, Langen H, Dahinden CA. Human basophils activated by mast cell-derived IL-3 express retinaldehyde dehydrogenase-II and produce the immunoregulatory mediator retinoic acid. Blood. 2008 Nov 1;112(9):3762-71.
  12. Russell RM. The vitamin A spectrum: from deficiency to toxicity. American Journal of Clinical Nutrition, Vol. 71, No. 4, 878-884, April 2000.
  13. Pasquali D, Thaller C, Eichele G. Abnormal level of retinoic acid in prostate cancer tissues. J Clin Endocrinol Metab. 1996 Jun;81(6):2186-91.