Measurement

Part:BBa_K2333413

Designed by: Sejal Dhawan   Group: iGEM17_William_and_Mary   (2017-10-27)
Revision as of 00:38, 2 November 2017 by Chli (Talk | contribs)


UNS J23100 mScarlet-I

This part is contained in a suite of protein degradation tagged mScarlet reporters under the control of the strong constitutive promoter BBa_J23100. These parts, in combination with inducible mf-Lon protease constructs, allowed William and Mary 2017 to characterize the degradation properties of each protein degradation tag (pdt) on a plasmid-based system. William and Mary 2017 successfully demonstrated distinct levels of protein degradation by each of the 6 pdt’s, and mScarlet reporters have been codon-optimized for E. coli and feature a double stop codon for enhanced efficiency. This specific part is a tagless control construct (J23100 mScarlet with no pdt) which can be used as a comparison against protein degradation for parts with pdt's.


Usage and Biology

This part contains mScarlet-I with no pdt under the control of the constitutive promoter BBa_J23100. The mScarlet-I reporter is a monomeric red fluorescent protein with high quantum yield, brightness, and fold-time. See Bindels, et. al (2016). The part also contains a double stop codon and BBa_B0015 (double terminator) in the William and Mary iGEM Universal Nucleotide Sequences (UNS) format. This enables easy cloning with Gibson Assembly, as UNS primers are designed for easy PCRs and high yield Gibson Assembly. See Torella, et. al (2013). When used in combination with inducible mf-Lon protease constructs, this part can be used as a control in characterizing degradation properties of the 6 pdt's. This is a part of the first experimentally-demonstrated system that allows future iGEM teams to access modular, predictive control over the temporal dynamics of their circuits by swapping parts at the genetic sequence level.

Characterization

W&M 2017 characterized this tagless construct in combination with inducible mf-Lon protease constructs as a control for their strength of degradation measurements. The graph below shows degradation strength data along with the data from the other tags in this series (BBa_K2333413-BBa_K2333419).


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 47
    Illegal NheI site found at 70
    Illegal NotI site found at 605
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References

[1] Bindels, D. S., Haarbosch, L., Weeren, L. V., Postma, M., Wiese, K. E., Mastop, M., . . . Gadella, T. W. (2016). MScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods, 14(1), 53-56. doi:10.1038/nmeth.4074

[2] Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nature Biotechnology. 2014;32(12):1276–1281.

[3] Torella JP, Boehm CR, Lienert F, Chen J-H, Way JC, Silver PA. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Research. 2013;42(1):681–689.

[edit]
Categories
Parameters
None