Coding

Part:BBa_K2374003

Designed by: Qian Zeng   Group: iGEM17_Tongji_China   (2017-10-20)
Revision as of 17:30, 30 October 2017 by Zjeng (Talk | contribs)


ple (Tyrosine 3-monooxygenase, TH) -> (fruit fly)

UAS-TH
Use in D.melanogaster
RFC standard RFC 10 compatible
Backbone pSB1C3
Submitted by [http://2017.igem.org/Team:Tongji_China Tongji_China 2017]


An upstream activating sequence or upstream activation sequence (UAS) is a cis-acting regulatory sequence. It is distinct from the promoter and increases the expression of a neighbouring gene. Due to its essential role in activating transcription, the UAS is often considered to be analogous to the function of the enhancer in multicellular eukaryotes. Upstream activation sequences are a crucial part of induction, enhancing the expression of the protein of interest through increased transcriptional activity. The UAS is found adjacently upstream to a minimal promoter (TATA box) and serves as a binding site for transactivators. If the transcriptional transactivator does not bind to the UAS in the proper orientation then transcription cannot begin.


Gene ple encodes Tyrosine 3-monooxygenase which also known as TH (EC:1.14.16.2). It plays an important role in the physiology of adrenergic neurons. This protein is involved in step 1 of the subpathway that synthesizes dopamine from L-tyrosine. Dopamine has critical roles in system development. Proteins known to be involved in the 2 steps of the subpathway in this organism are:
1.Tyrosine 3-monooxygenase (ple)
2.no protein annotated in this organism
This subpathway is part of the pathway dopamine biosynthesis, which is itself part of Catecholamine biosynthesis. It belongs to the biopterin-dependent aromatic amino acid hydroxylase family. We also provide ple promoter in BBa_K2374001.


We construct pSB1C3-UAS-TH and pUAST-UAS-TH. The pSB1C3-UAS-TH is for submission. The pUAST-UAS-TH also with the other two plasmids: pUAST-ple-GAL4 (BBa_K2374005)and pUAST-ple-GAL80ts (BBa_K2374006) are used to do micro-injection into the D.melanogaster. We must combine the three pathways to determine if the system work well. The result of our testing on D.melanogaster is displayed below.



Usage and Biology

The protein encoded by this gene is involved in the conversion of tyrosine to dopamine. It is the rate-limiting enzyme in the synthesis of catecholamines, hence plays a key role in the physiology of adrenergic neurons. Mutations in this gene have been associated with autosomal recessive Segawa syndrome. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1157
    Illegal XhoI site found at 289
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 535
    Illegal BsaI site found at 1501
    Illegal BsaI.rc site found at 253
    Illegal BsaI.rc site found at 1019
    Illegal BsaI.rc site found at 1168


Functional Parameters

TH is involved in step 1 of the subpathway that synthesizes dopamine from L-tyrosine and plays an important role in the physiology of adrenergic neurons.

References

1. Webster Nocholas, Jin Jiarui, Green Stephen, Hollis Melvyn, Chambon Pierre (1988). The Yeast UASG is a transcriptional enhancer in human hela cells in the presence of the GAL4 trans-activator. Cell. 52 (2): 169–178.
2. West Jr. Robert W., Yocum R. Rogers, Ptashne Mark (1984). Saccharomyces cerevisiae GAL1-GAL10 Divergenet Promoter Region: Location and Function of the Upstream Activating Sequence UAS. Molecular and Cellular Biology. 4 (11): 2467–2478.
3. Lewandoski Mark (2001). Conditional control of gene expression in the mouse. Nature Reviews Genetics. 2: 743–755.

[edit]
Categories
Parameters
None