Difference between revisions of "Featured Parts:Light Sensor"

Line 3: Line 3:
 
From Levskyaya ''et al.''
 
From Levskyaya ''et al.''
  
'''We have designed a bacterial system that is switched between different states by red light.  The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image.'''
+
{|
 +
| width=25px |
 +
|'''"We have designed a bacterial system that is switched between different states by red light.  The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image."'''
 +
|}
  
 
===Sample photos===
 
===Sample photos===
Line 33: Line 36:
 
[[Image:Coliroidparts.jpg]]<br>
 
[[Image:Coliroidparts.jpg]]<br>
 
Diagram courtesy of [http://openwetware.org/wiki/Drew_Endy Drew Endy].
 
Diagram courtesy of [http://openwetware.org/wiki/Drew_Endy Drew Endy].
 +
 +
For details on system implementation, see the reference at the bottom of this page.
  
 
===BioBricks parts list===
 
===BioBricks parts list===
Line 57: Line 62:
  
 
===Other===
 
===Other===
*[http://openwetware.org/wiki/BE.109:Systems_engineering MIT Biological Engineering laboratory module] on bacterial photography developed by [http://openwetware.org/wiki/Natalie_Kuldell Natalie Kuldell]
+
#[http://openwetware.org/wiki/BE.109:Systems_engineering MIT Biological Engineering laboratory module] on bacterial photography developed by [http://openwetware.org/wiki/Natalie_Kuldell Natalie Kuldell]
*[http://openwetware.org/wiki/LightCannon Instructions] for how to build a "light cannon" for use in bacterial photography.
+
#[http://openwetware.org/wiki/LightCannon Instructions] for how to build a "light cannon" for use in bacterial photography.

Revision as of 21:20, 4 May 2006

System overview

From Levskyaya et al.

"We have designed a bacterial system that is switched between different states by red light. The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image."

Sample photos

Here are a selection of sample coliroid taken with the bacterial photography system.

http://openwetware.org/images/9/9a/Macintosh_HD-Users-nkuldell-Desktop-bacterialselfportrait.jpg http://openwetware.org/images/8/83/UT_HelloWorld.jpg http://openwetware.org/images/thumb/d/d1/ColiroidEllington.png/200px-ColiroidEllington.png http://openwetware.org/images/6/68/ColiroidFSM.jpg
[http://openwetware.org/wiki/Jeff_Tabor Jeff Tabor] holding a coliroid.
Photo credit: Marsha Miller, University of Texas at Austin. Image courtesy of UT/UCSF.
Hello World coliroid published in Levskaya et al., Nature, 2005. This is a coliroid portait of Andy Ellington. You can compare it with the [http://www.icmb.utexas.edu/images/faculty/ellington.jpg real Andy]. Image courtesy of UT/UCSF. This is a coliroid of the [http://venganza.org Flying Spaghetti Monster]. Image courtesy of UT/UCSF.

Device implementation

This system consists of two devices.

  1. A light sensor which takes red light as an input and produces PoPS as an output.
  2. A color generator which takes a PoPS signal as input and generate color as an output.

Coliroiddevices.jpg
Diagram courtesy of [http://openwetware.org/wiki/Drew_Endy Drew Endy].

Parts implementation

This diagram shows the list of parts that make up each of the two devices.

Coliroidparts.jpg
Diagram courtesy of [http://openwetware.org/wiki/Drew_Endy Drew Endy].

For details on system implementation, see the reference at the bottom of this page.

BioBricks parts list

Light sensing parts

Color generating parts

Related parts

Contact

  • System design and implementation by [http://openwetware.org/wiki/User:Levskaya Anselm Levskaya], Aaron Chevalier, [http://openwetware.org/wiki/Jeff_Tabor Jeff Tabor], [http://openwetware.org/wiki/User:LLavery Laura Lavery], Matthew Levy, Eric Davidson, Alexander Scouras, [http://ellingtonlab.org/ Andy Ellington], Ed Marcotte, and [http://www.voigtlab.ucsf.edu/ Chris Voigt].

References

Papers

  1. Engineering Escherichia coli to see light
    Nature 24 November 2005 DOI:10.1038/nature04405
    A. Levskaya et al.
    [http://www.nature.com/nature/journal/v438/n7067/full/nature04405.html URL] [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=16306980 Pubmed] [http://www.hubmed.org/display.cgi?uids=16306980 Hubmed]

Other

  1. [http://openwetware.org/wiki/BE.109:Systems_engineering MIT Biological Engineering laboratory module] on bacterial photography developed by [http://openwetware.org/wiki/Natalie_Kuldell Natalie Kuldell]
  2. [http://openwetware.org/wiki/LightCannon Instructions] for how to build a "light cannon" for use in bacterial photography.