Difference between revisions of "Part:BBa K5436124"
Rhayashizaki (Talk | contribs) |
Rhayashizaki (Talk | contribs) |
||
Line 33: | Line 33: | ||
<li><strong>Overview</strong></li> | <li><strong>Overview</strong></li> | ||
<li><strong>Components</strong></li> | <li><strong>Components</strong></li> | ||
− | <li><strong>Cloning & Expression</strong> | + | <li><strong>Cloning & Expression</strong></li> |
+ | <li><strong>Functional Characterization</strong> | ||
<ul> | <ul> | ||
− | |||
<li><strong>Curli Fiber Formation Assay</strong></li> | <li><strong>Curli Fiber Formation Assay</strong></li> | ||
<li><em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></li> | <li><em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></li> | ||
Line 46: | Line 46: | ||
<li><strong>In Silico Energy Simulation</strong> | <li><strong>In Silico Energy Simulation</strong> | ||
<ul> | <ul> | ||
− | <li><strong>AutoDock</strong></li> | + | <li><strong>Affinity Simulation using AutoDock Vina</strong></li> |
<li><strong>PyRosetta</strong></li> | <li><strong>PyRosetta</strong></li> | ||
<li><strong>FoldX</strong></li> | <li><strong>FoldX</strong></li> | ||
− | |||
</ul> | </ul> | ||
</li> | </li> | ||
Line 68: | Line 67: | ||
<div class="fig-table-caption"><p><strong>Fig 2.</strong> BIND-bearPETase docking to PET polymer</p> | <div class="fig-table-caption"><p><strong>Fig 2.</strong> BIND-bearPETase docking to PET polymer</p> | ||
</div> | </div> | ||
− | <p>This enables direct access to substrates without the need for purification, as well as the stabilization of enzyme activity and the reuse of enzymes. This is a technique referred to as the BIND-System [1], and whole-cell biocatalysts equipped with PETase are called BIND-PETase [2].</p> | + | <p>This enables direct access to substrates without the need for purification, as well as the stabilization of enzyme activity and the reuse of enzymes. This is a technique referred to as the BIND-System <sup class="footnote-ref"><a href="#fn1" id="fnref1">[1]</a></sup>, and whole-cell biocatalysts equipped with PETase are called BIND-PETase <sup class="footnote-ref"><a href="#fn2" id="fnref2">[2]</a></sup>.</p> |
− | <p>The key effort in this part was creating “bearPETase” ,the optimal PETase for the BIND-System. BearPETase, uniquely developed by Waseda-Tokyo 2024, combines mutations from depoPETase (Shi et al., 2023) [3] and duraPETase (Cui et al., 2021) [4] developed through directed evolution. We generated several variant groups and identified the optimal one through functional comparisons in wet experiments.</p> | + | <p>The key effort in this part was creating “bearPETase” ,the optimal PETase for the BIND-System. BearPETase, uniquely developed by Waseda-Tokyo 2024, combines mutations from depoPETase (Shi et al., 2023) <sup class="footnote-ref"><a href="#fn3" id="fnref3">[3]</a></sup> and duraPETase (Cui et al., 2021) <sup class="footnote-ref"><a href="#fn4" id="fnref4">[4]</a></sup> developed through directed evolution. We generated several variant groups and identified the optimal one through functional comparisons in wet experiments.</p> |
<p>Furthermore, this part significantly contributes to the iGEM community by expanding enzyme availability. As mentioned above, the BIND-System reduces concerns about purification costs and quality, making them negligible. It also allows for maintaining and reusing proteins with unstable activity. By replacing the bearPETase portion with other BioBricks, any enzyme's use can be simplified.</p> | <p>Furthermore, this part significantly contributes to the iGEM community by expanding enzyme availability. As mentioned above, the BIND-System reduces concerns about purification costs and quality, making them negligible. It also allows for maintaining and reusing proteins with unstable activity. By replacing the bearPETase portion with other BioBricks, any enzyme's use can be simplified.</p> | ||
<h2 id="components"><a class="header-anchor-link" href="#components" aria-hidden="true"></a> <strong>Components</strong></h2> | <h2 id="components"><a class="header-anchor-link" href="#components" aria-hidden="true"></a> <strong>Components</strong></h2> | ||
Line 86: | Line 85: | ||
It is useful in protein purification and also beneficial for Western blotting, where anti-His Tag antibodies are used as primary antibodies.</p> | It is useful in protein purification and also beneficial for Western blotting, where anti-His Tag antibodies are used as primary antibodies.</p> | ||
<h2 id="cloning-%26-expression"><a class="header-anchor-link" href="#cloning-%26-expression" aria-hidden="true"></a> <strong>Cloning & Expression</strong></h2> | <h2 id="cloning-%26-expression"><a class="header-anchor-link" href="#cloning-%26-expression" aria-hidden="true"></a> <strong>Cloning & Expression</strong></h2> | ||
+ | <h3 id="disgning-rbs-for-bind-system"><a class="header-anchor-link" href="#disgning-rbs-for-bind-system" aria-hidden="true"></a> <strong>Disgning RBS for BIND-System</strong></h3> | ||
+ | <p>The "Optimized RBS for BIND-System (<a href="https://parts.igem.org/Part:BBa_K5436005" target="_blank" rel="nofollow noopener noreferrer"><strong>BBa_K5436005</strong></a>)" included in this part was carefully designed by the RBS Calculator from Salis Lab<sup class="footnote-ref"><a href="#fn5" id="fnref5">[5]</a></sup>, rather than reusing an existing RBS.</p> | ||
+ | <p>Existing RBS used in previous CsgA overexpression experiments did not meet our criteria. The RBS included in the pRha + CsgA (BBa_K1583100) developed by iGEM15_TU_Delft had a transcriptional rate of 40.80, which was insufficient for the expression levels we required.</p> | ||
+ | <p>On the other hand, the transcritional rate of the RBS in Rec-PhoA/CsgA (Addgene #170787)<sup class="footnote-ref"><a href="#fn6" id="fnref6">[6]</a></sup> was approximately 700, and it appeared to meet our requirements. Referring to that order of magnitude, we newly designed an RBS for BIND-PETase (WT) with a transcriptional rate of 800 using the RBS Calculator.</p> | ||
+ | <p>As mentioned later, this optimized RBS was sufficient to induce the expression of CsgA-bearPETase.</p> | ||
+ | <p><img src="https://static.igem.wiki/teams/5436/engineering/rbs3.png" alt="" width="500"></p> | ||
+ | <div class="fig-table-caption"><p><strong>Fig. 4.</strong> Optimized RBS for BIND-System generated with Transcriptional Rate set to 800(<a href="https://www.denovodna.com:4433/shared/mOZTliZSwLyxdFIc2UbyADmdeH5Iyz1O" target="_blank" rel="nofollow noopener noreferrer">detailed result</a>)</p> | ||
+ | </div> | ||
<h3 id="molecular-cloning"><a class="header-anchor-link" href="#molecular-cloning" aria-hidden="true"></a> <strong>Molecular Cloning</strong></h3> | <h3 id="molecular-cloning"><a class="header-anchor-link" href="#molecular-cloning" aria-hidden="true"></a> <strong>Molecular Cloning</strong></h3> | ||
− | <p>We used NEBuilder HiFi DNA Assembly [ | + | <p>We used NEBuilder HiFi DNA Assembly <sup class="footnote-ref"><a href="#fn7" id="fnref7">[7]</a></sup> to obtain plasmids encoding BIND-bearPETase. The DNA fragments encoding bearPETase were prepared with Gene Fragments Synthesis Service (Twist Bioscience).</p> |
<p>After culturing and miniprepping, we ran electrophoresis, observing bands near the expected size. Sequence analysis confirmed the correct plasmid sequences.</p> | <p>After culturing and miniprepping, we ran electrophoresis, observing bands near the expected size. Sequence analysis confirmed the correct plasmid sequences.</p> | ||
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/4-cloning.png" alt="" width="500"></p> | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/4-cloning.png" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 5.</strong> Electrophoresis and Plasmid map of the pMAL-c4X-RBS+BIND-bearPETase</p> |
</div> | </div> | ||
<h3 id="western-blotting"><a class="header-anchor-link" href="#western-blotting" aria-hidden="true"></a> <strong>Western Blotting</strong></h3> | <h3 id="western-blotting"><a class="header-anchor-link" href="#western-blotting" aria-hidden="true"></a> <strong>Western Blotting</strong></h3> | ||
− | <p>Samples induced for the expression of CsgA-bearPETase by IPTG were lysed, and when subjected to Western Blotting using His-Tag as the primary antibody, a clear band was observed around 45 kDa, confirming the overexpression of the target protein. For detailed protocols of the lysis, refer to our wiki, <a href="https://2024.igem.wiki/waseda-tokyo/experiments" target="_blank" rel="nofollow noopener noreferrer">Experiments | + | <p>Samples induced for the expression of CsgA-bearPETase by IPTG were lysed, and when subjected to Western Blotting using His-Tag as the primary antibody, a clear band was observed around 45 kDa, confirming the overexpression of the target protein. For detailed protocols of the lysis, refer to our wiki, <a href="https://2024.igem.wiki/waseda-tokyo/experiments" target="_blank" rel="nofollow noopener noreferrer">Experiments</a>.<br> |
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/5-wb.png" alt="" width="250"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/5-wb.png" alt="" width="250"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 6.</strong> Confirmation of BIND-bearPETase expression (picked up 3 colonies).</p> |
</div> | </div> | ||
<h2 id="functional-characterization"><a class="header-anchor-link" href="#functional-characterization" aria-hidden="true"></a> <strong>Functional Characterization</strong></h2> | <h2 id="functional-characterization"><a class="header-anchor-link" href="#functional-characterization" aria-hidden="true"></a> <strong>Functional Characterization</strong></h2> | ||
<p>A total of 7 wet experiments were conducted to thoroughly investigate the function of BIND-bearPETase. During this process, we compared BIND-bearPETase with its ancestor sequence BIND-PETase (WT) (<a href="https://parts.igem.org/Part:BBa_K5436130" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436130</a>), BIND-duraPETase (<a href="https://parts.igem.org/Part:BBa_K5436133" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436133</a>), and BIND-PETase (ID23) (<a href="https://parts.igem.org/Part:BBa_K5436123" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436123</a>), which is created with a similar design strategy. The results are documented below.</p> | <p>A total of 7 wet experiments were conducted to thoroughly investigate the function of BIND-bearPETase. During this process, we compared BIND-bearPETase with its ancestor sequence BIND-PETase (WT) (<a href="https://parts.igem.org/Part:BBa_K5436130" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436130</a>), BIND-duraPETase (<a href="https://parts.igem.org/Part:BBa_K5436133" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436133</a>), and BIND-PETase (ID23) (<a href="https://parts.igem.org/Part:BBa_K5436123" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436123</a>), which is created with a similar design strategy. The results are documented below.</p> | ||
− | <p>On the Wiki, BIND-bearPETase was evaluated by comparing it with numerous variants not shown here. The process is detailed in the <a href="https://2024.igem.wiki/waseda-tokyo/engineering/" target="_blank" rel="nofollow noopener noreferrer">Engineering Success</a> section of | + | <p>On the Wiki, BIND-bearPETase was evaluated by comparing it with numerous variants not shown here. The process is detailed in the <a href="https://2024.igem.wiki/waseda-tokyo/engineering/" target="_blank" rel="nofollow noopener noreferrer">Engineering Success</a> section of our wiki.</p> |
<h3 id="curli-fiber-formation-assay"><a class="header-anchor-link" href="#curli-fiber-formation-assay" aria-hidden="true"></a> <strong>Curli Fiber Formation Assay</strong></h3> | <h3 id="curli-fiber-formation-assay"><a class="header-anchor-link" href="#curli-fiber-formation-assay" aria-hidden="true"></a> <strong>Curli Fiber Formation Assay</strong></h3> | ||
<p>The formation of Curli fibers of BIND-bearPETase was quantitatively measured. Whether Curli fibers are formed correctly is crucial for the enzyme's stability and reusability.</p> | <p>The formation of Curli fibers of BIND-bearPETase was quantitatively measured. Whether Curli fibers are formed correctly is crucial for the enzyme's stability and reusability.</p> | ||
− | <p>After centrifuging the BIND-bearPETase suspension, the resulting pellet exhibited a robust structure that did not break apart even after multiple pipetting, as shown in Fig. | + | <p>After centrifuging the BIND-bearPETase suspension, the resulting pellet exhibited a robust structure that did not break apart even after multiple pipetting, as shown in Fig. 7. This suggests that the formation of Curli fibers due to the overexpression of CsgA-bearPETase led to the development of a biofilm structure in <em>E. coli</em>.</p> |
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/6-pellet.gif" alt="" width="500"></p> | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/6-pellet.gif" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 7.</strong> Robust pellet of BIND-bearPETase</p> |
</div> | </div> | ||
<p>In the Curli Fiber Formation Assay, Congo Red dye is used to stain Curli fibers, followed by centrifugation to form a pellet. Subsequently, the absorbance of the supernatant is measured to quantify the formation of Curli fibers. If the Congo Red dye is incorporated into the pellet and the supernatant appears pale, it can be confirmed that Curli fibers have been properly formed.</p> | <p>In the Curli Fiber Formation Assay, Congo Red dye is used to stain Curli fibers, followed by centrifugation to form a pellet. Subsequently, the absorbance of the supernatant is measured to quantify the formation of Curli fibers. If the Congo Red dye is incorporated into the pellet and the supernatant appears pale, it can be confirmed that Curli fibers have been properly formed.</p> | ||
− | <p>The results of Congo Red staining for BIND-bearPETase are shown in Fig. | + | <p>The results of Congo Red staining for BIND-bearPETase are shown in Fig. 8. It can be observed that Curli fibers are formed and stained in a manner dependent on the presence of BIND-bearPETase.<br> |
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/7-cr-obs.png" alt="" width="500"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/7-cr-obs.png" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 8.</strong> Curli Fiber Staining of BIND-bearPETase</p> |
</div> | </div> | ||
− | <p>Next, the absorbance of the supernatant was measured and compared between BIND-bearPETase and other variants (Fig. | + | <p>Next, the absorbance of the supernatant was measured and compared between BIND-bearPETase and other variants (Fig. 9).<br> |
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/8-curli-fiber-formation.png" alt="" width="500"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/8-curli-fiber-formation.png" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 9.</strong> Intensity of Curli Fiber Formation</p> |
</div> | </div> | ||
<p>Although BIND-bearPETase exhibited lower Curli fiber formation ability compared to BIND-PETase (WT),it had a higher Curli fiber formation ability than BIND-duraPETase, which is ancient of BIND-bearPETase. Additionally, it was found that BIND-bearPETase and BIND-PETase (ID23) possess a similar level of Curli fiber formation ability.</p> | <p>Although BIND-bearPETase exhibited lower Curli fiber formation ability compared to BIND-PETase (WT),it had a higher Curli fiber formation ability than BIND-duraPETase, which is ancient of BIND-bearPETase. Additionally, it was found that BIND-bearPETase and BIND-PETase (ID23) possess a similar level of Curli fiber formation ability.</p> | ||
<p>Based on these results, it can be concluded that bearPETase is more suited for the BIND-System in terms of Curli fiber formation ability among the many improved PETases.</p> | <p>Based on these results, it can be concluded that bearPETase is more suited for the BIND-System in terms of Curli fiber formation ability among the many improved PETases.</p> | ||
<h3 id="pnpb-hydrolysis-assay"><a class="header-anchor-link" href="#pnpb-hydrolysis-assay" aria-hidden="true"></a> <em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></h3> | <h3 id="pnpb-hydrolysis-assay"><a class="header-anchor-link" href="#pnpb-hydrolysis-assay" aria-hidden="true"></a> <em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></h3> | ||
− | <p>The activity of BIND-bearPETase was investigated in an easy way(Fig. | + | <p>The activity of BIND-bearPETase was investigated in an easy way(Fig. 10). <em>Para</em>-nitrophenyl butyrate (pNPB) produces yellow <em>para</em>-nitrophenol (pNP) upon hydrolysis, and we measured this product. However, the magnitude of hydrolytic activity against <em>p</em>NPB does not necessarily correspond to the activity against PET polymers.<br> |
Therefore, it is important to note that the pNPB Hydrolysis Assay only provides a simplified assessment of activity. (As will be discussed later section of PET Bottle Powder Degradation Assay, BIND-bearPETase demonstrated the highest practical degradation of PET among these variants.)<br> | Therefore, it is important to note that the pNPB Hydrolysis Assay only provides a simplified assessment of activity. (As will be discussed later section of PET Bottle Powder Degradation Assay, BIND-bearPETase demonstrated the highest practical degradation of PET among these variants.)<br> | ||
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/9-pnpb-assay.png" alt="" width="500"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/9-pnpb-assay.png" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 10.</strong> <em>p</em>NPB Hydrolysis Assay of BIND-PETase variants, including BIND-bearPETase</p> |
</div> | </div> | ||
<p>It was confirmed that the activities of BIND-bearPETase and BIND-PETase (ID23) increased compared to their ancestor sequences, BIND-PETase (WT) and BIND-duraPETase. BIND-bearPETase and BIND-PETase (ID23) designed by Waseda-Tokyo demonstrated superior performance, suggesting they possess more advantageous features for the practical application of PETase.</p> | <p>It was confirmed that the activities of BIND-bearPETase and BIND-PETase (ID23) increased compared to their ancestor sequences, BIND-PETase (WT) and BIND-duraPETase. BIND-bearPETase and BIND-PETase (ID23) designed by Waseda-Tokyo demonstrated superior performance, suggesting they possess more advantageous features for the practical application of PETase.</p> | ||
Line 127: | Line 134: | ||
<p>Here, we document the experimental results that verify the strengths of BIND-bearPETase regarding the stability and reusability of the enzyme in the social implementation of PETase.<br> | <p>Here, we document the experimental results that verify the strengths of BIND-bearPETase regarding the stability and reusability of the enzyme in the social implementation of PETase.<br> | ||
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/10-enphasize-stability-reusability-new.png" alt="" width="500"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/10-enphasize-stability-reusability-new.png" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 11.</strong> The advantages of BIND-bearPETase over free-PETase</p> |
</div> | </div> | ||
<h4 id="storage-activity-assay"><a class="header-anchor-link" href="#storage-activity-assay" aria-hidden="true"></a> <strong>Storage Activity Assay</strong></h4> | <h4 id="storage-activity-assay"><a class="header-anchor-link" href="#storage-activity-assay" aria-hidden="true"></a> <strong>Storage Activity Assay</strong></h4> | ||
<p>Since various BIND-PETases are whole-cell biocatalysts utilizing live <em>E. coli</em>, proper storage conditions allow for protein expression and bacterial growth, which can maintain or enhance their activity.<br> | <p>Since various BIND-PETases are whole-cell biocatalysts utilizing live <em>E. coli</em>, proper storage conditions allow for protein expression and bacterial growth, which can maintain or enhance their activity.<br> | ||
− | The activities of BIND-bearPETase were evaluated on days 0, 5, and 11 after expression using the <em>p</em>NPB Hydrolysis Assay (Fig. | + | The activities of BIND-bearPETase were evaluated on days 0, 5, and 11 after expression using the <em>p</em>NPB Hydrolysis Assay (Fig. 12). Additionally, we assessed the increase in activity when the storage temperature was changed to either 4°C or room temperature.<br> |
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/11-storage-activity-rt-4c.png" alt="" width="700"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/11-storage-activity-rt-4c.png" alt="" width="700"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 12.</strong> Storage Activity Assay on different condition; <strong>(A)</strong> 4°C, <strong>(B)</strong> RT</p> |
</div> | </div> | ||
<p>During storage, both BIND-bearPETase and BIND-PETase (ID23) exhibited a greater increase in activity over time compared to BIND-PETase (WT) and BIND-duraPETase.<br> | <p>During storage, both BIND-bearPETase and BIND-PETase (ID23) exhibited a greater increase in activity over time compared to BIND-PETase (WT) and BIND-duraPETase.<br> | ||
When stored at room temperature, BIND-bearPETase showed the highest increase in activity. These results suggest that BIND-bearPETase has greater convenience in storage compared to other BIND-PETases, making it advantageous for practical applications."</p> | When stored at room temperature, BIND-bearPETase showed the highest increase in activity. These results suggest that BIND-bearPETase has greater convenience in storage compared to other BIND-PETases, making it advantageous for practical applications."</p> | ||
<h4 id="reusability-assay"><a class="header-anchor-link" href="#reusability-assay" aria-hidden="true"></a> <strong>Reusability Assay</strong></h4> | <h4 id="reusability-assay"><a class="header-anchor-link" href="#reusability-assay" aria-hidden="true"></a> <strong>Reusability Assay</strong></h4> | ||
− | <p>BIND-bearPETase could be reused three times after a single reaction, with the presence of activity confirmed through the <em>p</em>NPB Hydrolysis Assay. The activity after reuse was also observed for BIND-PETase (WT) and other variants (Fig. | + | <p>BIND-bearPETase could be reused three times after a single reaction, with the presence of activity confirmed through the <em>p</em>NPB Hydrolysis Assay. The activity after reuse was also observed for BIND-PETase (WT) and other variants (Fig. 13).<br> |
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/12-reusability-assay.png" alt="" width="500"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/12-reusability-assay.png" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 13.</strong> Reusability of BIND-PETase variants including BIND-bearPETase (Cycle1-3)</p> |
</div> | </div> | ||
<p>It was observed that the activity increased after reuse. This may be due to the contamination of the reaction product, <em>p</em>NP, during the collecting stage of BIND-PETases. In this measurement, it was inevitably difficult to accurately assess the reusability because <em>p</em>NP contaminated the reaction system.</p> | <p>It was observed that the activity increased after reuse. This may be due to the contamination of the reaction product, <em>p</em>NP, during the collecting stage of BIND-PETases. In this measurement, it was inevitably difficult to accurately assess the reusability because <em>p</em>NP contaminated the reaction system.</p> | ||
<p>However, we attempted to conduct washing operations as thoroughly as possible to achieve the most accurate measurements. Additionally, the promotion of PETase enzyme folding due to the initial reaction may also contribute to the observed increase in activity.</p> | <p>However, we attempted to conduct washing operations as thoroughly as possible to achieve the most accurate measurements. Additionally, the promotion of PETase enzyme folding due to the initial reaction may also contribute to the observed increase in activity.</p> | ||
<p>BIND-duraPETase, BIND-PETase (ID23), and BIND-bearPETase exhibited an increase in activity during reuse. While the exact reasons for the activity increase upon reuse could not be identified, it was confirmed that at least BIND-bearPETase does not significantly lose activity even after reuse, indicating its advantage for practical applications.</p> | <p>BIND-duraPETase, BIND-PETase (ID23), and BIND-bearPETase exhibited an increase in activity during reuse. While the exact reasons for the activity increase upon reuse could not be identified, it was confirmed that at least BIND-bearPETase does not significantly lose activity even after reuse, indicating its advantage for practical applications.</p> | ||
+ | <h3 id="plastic-pellet-degradation-assay"><a class="header-anchor-link" href="#plastic-pellet-degradation-assay" aria-hidden="true"></a> <strong>Plastic Pellet Degradation Assay</strong></h3> | ||
+ | <p>Waseda-Tokyo 2024 evaluated the practical degradation activity of BIND-bearPETase. In this process, composite plastic pellets (PETPEPP) used in actual recycling plants and single-material pellets (PET(N)) were utilized as substrates.</p> | ||
+ | <p>After adding BIND-bearPETase suspension to the reaction system at pH 7.0 and pH 9.0 and allowing it to act for five days, mass reduction was confirmed in both types of pellets. The negative control did not show any weight loss (data not shown). For comparison, BIND-PETase (ID23) was also included.</p> | ||
+ | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/petpepp.png" alt="" width="500"></p> | ||
+ | <div class="fig-table-caption"><p><strong>Fig. 14(A).</strong> Mass reduction of PET-PE-PP pellets by BIND-PETase variants.</p> | ||
+ | </div> | ||
+ | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/petn.png" alt="" width="500"></p> | ||
+ | <div class="fig-table-caption"><p><strong>Fig. 14(B).</strong> Mass reduction of PET(N) pellets by BIND-PETase variants.</p> | ||
+ | <p>It was demonstrated that BIND-bearPETase and BIND-PETase(ID23) are capable of degrading the pellets. However, due to the pellets' heterogeneity, quantitative experiments are needed for accurate activity comparisons between variants.</p> | ||
+ | <p>The pellets were provided by the recycling company esa, and I would like to take this opportunity to express my gratitude.</p> | ||
<h3 id="pet-bottle-powder-degradation-assay"><a class="header-anchor-link" href="#pet-bottle-powder-degradation-assay" aria-hidden="true"></a> <strong>PET Bottle Powder Degradation Assay</strong></h3> | <h3 id="pet-bottle-powder-degradation-assay"><a class="header-anchor-link" href="#pet-bottle-powder-degradation-assay" aria-hidden="true"></a> <strong>PET Bottle Powder Degradation Assay</strong></h3> | ||
− | <p>It was confirmed that <strong>BIND-bearPETase possesses the highest practical activity against PET powder compared to other variants.</strong> PETase decomposes the PET polymer, resulting in the formation of TPA, MHET, and BHET (Fig. | + | <p>次に、より定量的なBIND-bearPETaseの活性比較の為に、PET Bottle Powderを用いたHPLC分析を実施しました。上述のペレット分解ではペレットの不均一性により、正確な活性比較が困難でした。その為、定量的な検証が重要でした。</p> |
+ | <p>It was confirmed that <strong>BIND-bearPETase possesses the highest practical activity against PET powder compared to other variants.</strong> PETase decomposes the PET polymer, resulting in the formation of TPA, MHET, and BHET (Fig. 15).<br> | ||
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/13-degradation-flow.jpg" alt="" width="500"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/13-degradation-flow.jpg" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 15.</strong> Enzymatic hydrolysis of PET by PETases and MHETases[^7<br> |
+ | ]</p> | ||
+ | </div> | ||
</div> | </div> | ||
<p>Waseda-Tokyo 2024 quantified the products TPA, MHET, and BHET, generated by BIND-bearPETase, using High-Performance Liquid Chromatography (HPLC).<br> | <p>Waseda-Tokyo 2024 quantified the products TPA, MHET, and BHET, generated by BIND-bearPETase, using High-Performance Liquid Chromatography (HPLC).<br> | ||
− | PET bottles, commonly used in everyday life, were ground with sandpaper, and BIND-bearPETase was applied. In addition to pH 7.0, the reaction was also carried out at pH 9.0, as many PETases are reported to have optimal conditions at pH 8.5 or higher[ | + | PET bottles, commonly used in everyday life, were ground with sandpaper, and BIND-bearPETase was applied. In addition to pH 7.0, the reaction was also carried out at pH 9.0, as many PETases are reported to have optimal conditions at pH 8.5 or higher <sup class="footnote-ref"><a href="#fn8" id="fnref8">[8]</a></sup>. The results were measured 1 day and 3 days after the reaction.<br> |
− | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/14-chromatograph.png" alt="" width="1000"></p> | + | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/14-chromatograph-1.png" alt="" width="1000"></p> |
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 16.</strong> HPLC chromatogram for the degradation products of PET bottle powder by BIND-bearPETase</p> |
</div> | </div> | ||
<p>In this way, it was confirmed that the products TPA, MHET, and BHET were generated by BIND-bearPETase. Additionally, it was suggested that the optimal pH for BIND-bearPETase is also pH 9.0.</p> | <p>In this way, it was confirmed that the products TPA, MHET, and BHET were generated by BIND-bearPETase. Additionally, it was suggested that the optimal pH for BIND-bearPETase is also pH 9.0.</p> | ||
− | <p>Furthermore, we quantitatively compared the amounts of these degradation products (Fig. | + | <p>Furthermore, we quantitatively compared the amounts of these degradation products (Fig. 17). Contrary to the <em>p</em>NPB hydrolysis assay mentioned earlier, <strong>BIND-bearPETase degraded PET bottle powder more effectively than BIND-PETase (ID23). BIND-bearPETase exhibited 10 times the activity of its ancestor BIND-duraPETase and 1.5 times that of its sibling BIND-PETase (ID23).</strong> These findings suggest that bearPETase, developed by Waseda-Tokyo, is well-suited for the BIND-System and demonstrates high practical activity.<br> |
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/15-hplc-tpa-mhet-bhet.png" alt="" width="500"></p> | <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/15-hplc-tpa-mhet-bhet.png" alt="" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 17.</strong> Degradation products of PET by BIND-bearPETase under different pH conditions. <strong>(A)</strong> pH 9 <strong>(B)</strong> pH7</p> |
</div> | </div> | ||
− | < | + | <h2 id="in-silico-energy-simulation"><a class="header-anchor-link" href="#in-silico-energy-simulation" aria-hidden="true"></a> <strong>In Silico Energy Simulation</strong></h2> |
− | + | <p>We conducted computational characterization of bearPETase in addition to the Wet experiments. The tools we used are as follows:</p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <p> | + | |
<ul> | <ul> | ||
− | <li>AutoDock | + | <li>AutoDock Vina [^9]</li> |
− | <li>PyRosetta [ | + | <li>PyRosetta [^10]</li> |
− | + | <li>FoldX [^11]</li> | |
− | <li>FoldX [ | + | |
</ul> | </ul> | ||
− | <p>AutoDock | + | <p>AutoDock Vinaが出力するエネルギーの値から結合親和性を評価することができる。エネルギーが低いほど結合親和性が高く、結合親和性が高ければ実際のWet実験で活性が高くなることが期待できる。PyRosettaが出力するエネルギーの値からBIND-PETaseの構造の安定性を評価することができる。FoldXは...</p> |
− | <p><strong>AutoDock | + | <p><strong>AutoDock Vina</strong></p> |
<p><strong>Method</strong></p> | <p><strong>Method</strong></p> | ||
<p>AutoDock Vinaを用いた検証ではPET2量体のPDBQTファイルと PETase(WT)、 duraPETase、PETase(ID23)、bearPETase(ID24)のPDBQTファイルを用意して分子ドッキングを実行した。BIND-PETaseではなくPETaseに対して検証を行った理由は、 BIND-PETaseに対して検証すると計算量が増えるから、実際に酵素活性と関係がある部分はPETaseの部分であるからである。PET2量体のPDBQTファイルとした理由の一つはPETaseはPETを分解するタンパク質であるのでPET分子が2量体以上でないと現実に即していないからである。もう一つはエネルギーの比較であれば2量体で十分であるからである。AutoDock Vinaが出力したエネルギーの値を用いてbearPETaseの結合親和性を評価した。</p> | <p>AutoDock Vinaを用いた検証ではPET2量体のPDBQTファイルと PETase(WT)、 duraPETase、PETase(ID23)、bearPETase(ID24)のPDBQTファイルを用意して分子ドッキングを実行した。BIND-PETaseではなくPETaseに対して検証を行った理由は、 BIND-PETaseに対して検証すると計算量が増えるから、実際に酵素活性と関係がある部分はPETaseの部分であるからである。PET2量体のPDBQTファイルとした理由の一つはPETaseはPETを分解するタンパク質であるのでPET分子が2量体以上でないと現実に即していないからである。もう一つはエネルギーの比較であれば2量体で十分であるからである。AutoDock Vinaが出力したエネルギーの値を用いてbearPETaseの結合親和性を評価した。</p> | ||
<p><strong>Results</strong></p> | <p><strong>Results</strong></p> | ||
<p>各PETaseに対して分子ドッキングを行った結果AutoDock Vinaが出力したエネルギーの値を以下の**Table. 1.<strong>に示す。グラフを</strong>Fig. 17.**に示す。 **Fig. 17.**は上がマイナスの値になっていることに注意する。</p> | <p>各PETaseに対して分子ドッキングを行った結果AutoDock Vinaが出力したエネルギーの値を以下の**Table. 1.<strong>に示す。グラフを</strong>Fig. 17.**に示す。 **Fig. 17.**は上がマイナスの値になっていることに注意する。</p> | ||
− | <div class="fig-table-caption"><p><strong>Table. 1.</strong> The | + | <div class="fig-table-caption"><p><strong>Table. 1.</strong> The affinity of PETase for PET</p> |
</div> | </div> | ||
<table> | <table> | ||
Line 211: | Line 222: | ||
</table> | </table> | ||
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/result-autodockvina.png" alt="Result of molecular docking" width="500"></p> | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/result-autodockvina.png" alt="Result of molecular docking" width="500"></p> | ||
− | <div class="fig-table-caption"><p><strong>Fig. 17.</strong> The | + | <div class="fig-table-caption"><p><strong>Fig. 17.</strong> The affinity of PETase for PET</p> |
</div> | </div> | ||
− | <p>**Table. 1.<strong>と</strong>Fig. 17.**より、bearPETaseはduraPETaseより結合親和性が高いことがわかる。つまりWet実験でも活性が高くなることが期待できる。実際、**Fig. 15.**に示されているようにbearPETaseはduraPETaseより活性が高くなっており、**シミュレーション通りの結果となっている。**一方でbearPETaseのエネルギーの値はPETase(WT)エネルギーの値と同じでPETase(ID23)のエネルギーの値より高くなっており **Fig. 15.** | + | <p>**Table. 1.<strong>と</strong>Fig. 17.**より、bearPETaseはduraPETaseより結合親和性が高いことがわかる。つまりWet実験でも活性が高くなることが期待できる。実際、**Fig. 15.**に示されているようにbearPETaseはduraPETaseより活性が高くなっており、**シミュレーション通りの結果となっている。**一方でbearPETaseのエネルギーの値はPETase(WT)エネルギーの値と同じでPETase(ID23)のエネルギーの値より高くなっており **Fig. 15.**の結果に反する。この結果について考察する。 PETaseがPET分子を分解する過程は次のようになっている。</p> |
+ | <ol> | ||
+ | <li>PET分子がPETaseにドッキングする</li> | ||
+ | <li>PETaseがPET分子を分解する</li> | ||
+ | <li>PET分子がPETaseからリリースされる</li> | ||
+ | </ol> | ||
+ | <p>しかし、AutoDock Vinaのような分子ドッキングツールは1.のシミュレーションのみを行っている。したがって2.と3.の段階の影響により**Fig. 15.<strong>と</strong>Fig. 17.**で異なる結果が得られたのだと考えられる。</p> | ||
+ | <p>ただ、少なくともbearPETaseはduraPETaseより活性が高くなることが期待できるということは言えるであろう。</p> | ||
<p>最後に、bearPETaseとPET分子が結合している様子を以下に示す。</p> | <p>最後に、bearPETaseとPET分子が結合している様子を以下に示す。</p> | ||
− | + | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/petase-24.gif" alt="Docking result of bearPETase" width="500"></p> | |
− | <div class="fig-table-caption"><p><strong>Fig. | + | <div class="fig-table-caption"><p><strong>Fig. 18.</strong> bearPETase docking to PET polymer</p> |
</div> | </div> | ||
+ | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/petase-24-edm.gif" alt="Docking result of bearPETase using electron density map" width="500"></p> | ||
+ | <div class="fig-table-caption"><p><strong>Fig. 19.</strong> bearPETase docking to PET polymer (Displayed using electronic density map)</p> | ||
</div> | </div> | ||
− | + | <p><strong>Fig. 18.<strong>と</strong>Fig. 19.<strong>の中で赤い点で示されているのがbearPETaseの結合部位である。PET分子はbearPETaseの結合部位にうまく結合している。したがってbearPETaseの結合親和性が</strong>視覚的にも示された</strong>。</p> | |
− | + | ||
− | + | ||
− | + | ||
− | <p><strong>Fig. | + | |
<p>これらの結果より**bearPETaseは祖先であるduraPETaseよりも結合親和性が高いことがコンピュータシミュレーションの観点から示された。**そしてWet実験でもduraPETaseより活性が高いことが大いに期待できる。コンピュータシミュレーション上ではPETase(WT)とbearPETaseの結合親和性は等しいという結果となったが、実際にはduraPETaseはPETase(WT)より活性が高いことが示されているのでbearPETaseはPETase(WT)よりも活性が高くなるであろうことがこの結果から予想できる。</p> | <p>これらの結果より**bearPETaseは祖先であるduraPETaseよりも結合親和性が高いことがコンピュータシミュレーションの観点から示された。**そしてWet実験でもduraPETaseより活性が高いことが大いに期待できる。コンピュータシミュレーション上ではPETase(WT)とbearPETaseの結合親和性は等しいという結果となったが、実際にはduraPETaseはPETase(WT)より活性が高いことが示されているのでbearPETaseはPETase(WT)よりも活性が高くなるであろうことがこの結果から予想できる。</p> | ||
<p><strong>PyRosetta</strong></p> | <p><strong>PyRosetta</strong></p> | ||
<p><strong>Method</strong></p> | <p><strong>Method</strong></p> | ||
− | <p>PyRosettaを用いた検証ではBIND-PETase(WT)、 BIND-duraPETase、 BIND-PETase(ID23)、 BIND-bearPETase(ID24) | + | <p>PyRosettaを用いた検証ではBIND-PETase(WT)、 BIND-duraPETase、 BIND-PETase(ID23)、 BIND-bearPETase(ID24)のPDBファイルを入力し、PyRosettaが出力する自由エネルギーの値を用いてBIND-bearPETaseの構造の安定性を評価した。AutoDock Vinaの場合と異なり、構造の安定性はBIND-PETase全体で評価する必要があることからBIND-PETaseを用いて検証を行った。</p> |
<p><strong>Results</strong></p> | <p><strong>Results</strong></p> | ||
− | <p>各BIND-PETaseに対してPyRosettaが出力したエネルギーの値を以下の**Table. 2.<strong>に示す。グラフを</strong>Fig. | + | <p>各BIND-PETaseに対してPyRosettaが出力したエネルギーの値を以下の**Table. 2.<strong>に示す。グラフを</strong>Fig. 20.**に示す。 **Fig. 20.<strong>と</strong>Fig. 21.**は上がマイナスの値になっていることに注意する。<strong>Table. 2.<strong>と</strong>Fig. 20.</strong>,**Fig. 21.**においてvanillaの項は入力したPDBファイルの状態で出力された値を示す。relaxedの項は各BIND-PETaseの構造を、エネルギーが最小になるように変更した後にPyRosettaに入力し、出力された値を示した。</p> |
− | <p> | + | <div class="fig-table-caption"><p><strong>Table. 2.</strong> The energy of BIND-PETase</p> |
− | + | </div> | |
− | <p><strong>Model</strong>< | + | <table> |
− | 執筆担当者:@Yuto TORIYAMA @Joseph Yokobori 調整お願いします<br> | + | <thead> |
+ | <tr> | ||
+ | <th style="text-align:center">BIND-PETase variants</th> | ||
+ | <th style="text-align:center">vanilla (REU)</th> | ||
+ | <th style="text-align:center">relaxed (REU)</th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td style="text-align:center">BIND-PETase(WT)</td> | ||
+ | <td style="text-align:center">-67.9058</td> | ||
+ | <td style="text-align:center">-697.097</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align:center">BIND-duraPETase</td> | ||
+ | <td style="text-align:center">-120.836</td> | ||
+ | <td style="text-align:center">-1128.91</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align:center">BIND-PETase(ID23)</td> | ||
+ | <td style="text-align:center">327.490</td> | ||
+ | <td style="text-align:center">-1154.16</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="text-align:center">BIND-bearPETase(ID24)</td> | ||
+ | <td style="text-align:center">-157.666</td> | ||
+ | <td style="text-align:center">-1172.45</td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/result-pyrosetta-vanilla.png" alt="Rosetta Score for vanila BIND-PETase" width="500"></p> | ||
+ | <div class="fig-table-caption"><p><strong>Fig. 20.</strong> The energy of BIND-PETase (vanilla)</p> | ||
+ | </div> | ||
+ | <p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/result-pyrosetta-relaxed.png" alt="Rosetta Score for relaxed BIND-PETase" width="500"></p> | ||
+ | <div class="fig-table-caption"><p><strong>Fig. 21.</strong> The energy of BIND-PETase (relaxed)</p> | ||
+ | </div> | ||
+ | <p><strong>Table. 2.<strong>と</strong>Fig. 20.<strong>と</strong>Fig. 21.<strong>から、PyRosettaの出力するエネルギーの値はBIND-bearPETaseが最も低いことがわかった。これはBIND-PETase(WT)、祖先であるBIND-duraPETase、兄弟であるBIND-PETase(ID23)よりも</strong>BIND-bearPETaseの構造が安定</strong>であることを示している。実際にPETaseを用いてPET分子を分解する時には構造が安定である方が良いであろう。よってPyRosettaが出力するエネルギーの値より<strong>BIND-bearPETaseの優位性が示された。</strong></p> | ||
+ | <p>FoldXを用いた検証では...</p> | ||
+ | <h2 id="mathematical-model"><a class="header-anchor-link" href="#mathematical-model" aria-hidden="true"></a> <strong>Mathematical Model</strong></h2> | ||
+ | <h3 id="membrane-transport-model"><a class="header-anchor-link" href="#membrane-transport-model" aria-hidden="true"></a> <strong>Membrane transport model</strong></h3> | ||
+ | <h3 id="pet-degradation-efficiency-model"><a class="header-anchor-link" href="#pet-degradation-efficiency-model" aria-hidden="true"></a> <strong>PET degradation efficiency model</strong></h3> | ||
+ | <p>執筆担当者:@Yuto TORIYAMA @Joseph Yokobori 調整お願いします<br> | ||
膜外輸送モデル+PET分解効率のモデル<br> | 膜外輸送モデル+PET分解効率のモデル<br> | ||
Wetで検証できなかったサーフェスディプレイ<br> | Wetで検証できなかったサーフェスディプレイ<br> | ||
Line 240: | Line 297: | ||
膜外輸送において、BIND-PETaseにおけるcsgAの発現だけでなく、大腸菌内にはcurli fiberを形成するために必要な分子を発現できる仕組みが存在する。この機構を介してcsgAが大腸菌外に移動するため、この流れを定量化した。次に膜外輸送されたcsgAがを形成し、そこに結合したPETaseがPET分解を行う。PETの長さとfiberの長さに応じたPET分解量を定量化した。<br> | 膜外輸送において、BIND-PETaseにおけるcsgAの発現だけでなく、大腸菌内にはcurli fiberを形成するために必要な分子を発現できる仕組みが存在する。この機構を介してcsgAが大腸菌外に移動するため、この流れを定量化した。次に膜外輸送されたcsgAがを形成し、そこに結合したPETaseがPET分解を行う。PETの長さとfiberの長さに応じたPET分解量を定量化した。<br> | ||
一連の流れの定量化により、本プロジェクトで打ち出したPET分解が十分機能することを評価できた。</p> | 一連の流れの定量化により、本プロジェクトで打ち出したPET分解が十分機能することを評価できた。</p> | ||
− | < | + | <h2 id="conclusion"><a class="header-anchor-link" href="#conclusion" aria-hidden="true"></a> <strong>Conclusion</strong></h2> |
− | <p>Waseda-Tokyo | + | <p>We, Waseda-Tokyo 2024 team has developed a novel enzyme system called "BIND-bearPETase," which makes the use of PETase more accessible and efficient. This technology can also be applied to other enzymes, suggesting that the BIND-System can reduce enzyme purification costs and improve convenience.</p> |
− | <p>Wet | + | <p>In Wet Experiments, it was confirmed that BIND-bearPETase has higher hydrolytic activity compared to other BIND-PETase variants. Additionally, experiments verified that BIND-bearPETase does not require purification, can be stored for approximately two weeks, and can be reused up to three times. Furthermore, it was demonstrated that BIND-bearPETase can be applied to PET from everyday PET bottles, showcasing the practical potential of this part.</p> |
− | <p> | + | <p>In Dry Experiments, energy simulations were used to verify the stability of PETase-PET docking and the structural stability, which could not be confirmed in Wet Experiments. Moreover, a mathematical model allowed for the examination of outer membrane transport.</p> |
− | <p> | + | <p>The detailed documentation of BIND-bearPETase will serve as a crucial guide for future iGEMers who wish to use or modify and apply this system.</p> |
− | + | <h1 id="references"><a class="header-anchor-link" href="#references" aria-hidden="true"></a> References</h1> | |
− | + | <section class="footnotes"> | |
− | + | <ol class="footnotes-list"> | |
− | + | <li id="fn1" class="footnote-item"><p>Nguyen, P. et al. (2014) Programmable biofilm-based materials from engineered curli nanofibres. <em>Nat. Commun. 5</em>, 4945. doi: 10.1038/ncomms5945 <a href="#fnref1" class="footnote-backref">↩︎</a></p> | |
− | + | </li> | |
+ | <li id="fn2" class="footnote-item"><p>Zhu B. et al. (2022) Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase, <em>Environ. Sci. Technol. Lett. 9</em>(7), 650-657, doi: 10.1021/acs.estlett.2c00332 <a href="#fnref2" class="footnote-backref">↩︎</a></p> | ||
+ | </li> | ||
+ | <li id="fn3" class="footnote-item"><p>L Shi et al.(2023) Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. <em>Angewandte Chemie International Edition 62</em>(14) doi: 10.1002/anie.202218390 <a href="#fnref3" class="footnote-backref">↩︎</a></p> | ||
+ | </li> | ||
+ | <li id="fn4" class="footnote-item"><p>Y Cui et al.(2021) Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. <em>ACS Catal</em>. <em>11</em>(3), 1340–1350. doi: 10.1021/acscatal.0c05126 <a href="#fnref4" class="footnote-backref">↩︎</a></p> | ||
+ | </li> | ||
+ | <li id="fn5" class="footnote-item"><p>New England Biolabs. NEBuilder® HiFi DNA Assembly Master Mix. <a href="https://www.neb.com/ja-jp/products/e2621-nebuilder-hifi-dna-assembly-master-mix" target="_blank" rel="nofollow noopener noreferrer">https://www.neb.com/ja-jp/products/e2621-nebuilder-hifi-dna-assembly-master-mix</a>. <a href="#fnref5" class="footnote-backref">↩︎</a></p> | ||
+ | </li> | ||
+ | <li id="fn6" class="footnote-item"><p>Ahan RE et al.(2019) Cellular Biocatalysts Using Synthetic Genetic Circuits for Prolonged and Durable Enzymatic Activity. <em>Chembiochem</em>.20(14):1799-1809. doi: 10.1002/cbic.201800767. <a href="#fnref6" class="footnote-backref">↩︎</a></p> | ||
+ | </li> | ||
+ | <li id="fn7" class="footnote-item"><p>V Pirillo et al.(2023) Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate. <em>The FEBS Jour. 288</em>(16) 4730-4745. doi.org/10.1111/febs.15850. <a href="#fnref7" class="footnote-backref">↩︎</a></p> | ||
+ | </li> | ||
+ | <li id="fn8" class="footnote-item"><p>F Kawai et al. (2022) Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. <em>AMB Expr</em> <em>12</em>(134) doi: 10.1186/s13568-022-01474-y <a href="#fnref8" class="footnote-backref">↩︎</a></p> | ||
+ | </li> | ||
+ | </ol> | ||
+ | </section> | ||
+ | |||
Revision as of 19:52, 29 September 2024
Optimized RBS for BIND-System+BIND-bearPETase+6xHisTag
Sequence and Features
Molecular weight: 46.6 kDa
Codon optimized for E.coli BL21(DE3) cells.
- 10INCOMPATIBLE WITH RFC[10]Illegal PstI site found at 395
- 12INCOMPATIBLE WITH RFC[12]Illegal PstI site found at 395
Illegal NotI site found at 550 - 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 478
- 23INCOMPATIBLE WITH RFC[23]Illegal PstI site found at 395
- 25INCOMPATIBLE WITH RFC[25]Illegal PstI site found at 395
Illegal NgoMIV site found at 622 - 1000COMPATIBLE WITH RFC[1000]
Abstract
This part was designed for the construction of Whole-cell Biocatalysts "BIND-bearPETase." Waseda-Tokyo2024 thoroughly investigated its functionality through wet lab experiments, mathematical modeling, and energetic simulations. Additionally, this part holds great value for the iGEM community by addressing the urgent need for better plastic waste management and expanding any enzyme availability.
Agenda
- Overview
- Components
- Cloning & Expression
- Functional Characterization
- Curli Fiber Formation Assay
- pNPB Hydrolysis Assay
- Storage Activity Assay
- Reusability Assay
- PET Bottle Powder Degradation Assay
- Plastic Pellet Degradation Assay
- In Silico Energy Simulation
- Affinity Simulation using AutoDock Vina
- PyRosetta
- FoldX
- Mathematical Modeling
- Membrane transport model
- PET degradation efficiency model
- Conclusion
Overview
This "BIND-bearPETase" offers benefits that address the shortcomings of conventional free PETase shown below.
This part encodes the CsgA-bearPETase fusion protein. CsgA is an extracellular fibrous structure-forming factor that constructs Curli Fibers on the surface of the E. coli membrane. By fusing bearPETase to CsgA, we enabled the presentation of bearPETase on the cell membrane surface in a fiber-linked manner.
This enables direct access to substrates without the need for purification, as well as the stabilization of enzyme activity and the reuse of enzymes. This is a technique referred to as the BIND-System [1], and whole-cell biocatalysts equipped with PETase are called BIND-PETase [2].
The key effort in this part was creating “bearPETase” ,the optimal PETase for the BIND-System. BearPETase, uniquely developed by Waseda-Tokyo 2024, combines mutations from depoPETase (Shi et al., 2023) [3] and duraPETase (Cui et al., 2021) [4] developed through directed evolution. We generated several variant groups and identified the optimal one through functional comparisons in wet experiments.
Furthermore, this part significantly contributes to the iGEM community by expanding enzyme availability. As mentioned above, the BIND-System reduces concerns about purification costs and quality, making them negligible. It also allows for maintaining and reusing proteins with unstable activity. By replacing the bearPETase portion with other BioBricks, any enzyme's use can be simplified.
Components
I. Optimized RBS for BIND-System (Waseda-Tokyo2024, BBa_K5436005)
This RBS is designed to efficiently drive the BIND-System. In some existing BioBricks, inappropriate RBS strength can either overload E. coli with excessive expression or result in no expression. We've designed an RBS to optimize the amount of CsgA displayed on E. coli’s surface as components of curli fibers, which will aid future iGEMers using the BIND-System.
II. csgA-taa(Waseda-Tokyo2024, BBa_K5436006)
CsgA-taa is a modified version of BBa_K1583000 from iGEM15_TU_Delft, with the stop codon removed, enabling the expression of the desired protein in a fused state after the Curli fiber formation factor CsgA.
III. BamHI_Linker (Waseda-Tokyo2024, BBa_K5436020)
This uses the BamHI recognition site, which consists of 6 nucleotides, directly as a linker. The BamHI recognition site encodes glycine and serine, which are commonly used amino acids in linker sequences.
IV. bearPETase (Waseda-Tokyo2024, BBa_K5436015)
BearPETase was rationally designed by Waseda-Tokyo 2024 to enhance its enzymatic activity. As shown below, we confirmed that its enzymatic activity surpassed that of existing variants. The existing PETase variants include depoPETase and duraPETase, and combining both was expected to improve enzymatic activity. Based on that consideration, we created 81 combinations, excluding the overlapping mutations Q119Y and Q119R, and generated 3D structures using AlphaFold 2, selecting those with stable structures.
V. 6x HisTag (Waseda-Tokyo2024, BBa_K5436021)
It is useful in protein purification and also beneficial for Western blotting, where anti-His Tag antibodies are used as primary antibodies.
Cloning & Expression
Disgning RBS for BIND-System
The "Optimized RBS for BIND-System (BBa_K5436005)" included in this part was carefully designed by the RBS Calculator from Salis Lab[5], rather than reusing an existing RBS.
Existing RBS used in previous CsgA overexpression experiments did not meet our criteria. The RBS included in the pRha + CsgA (BBa_K1583100) developed by iGEM15_TU_Delft had a transcriptional rate of 40.80, which was insufficient for the expression levels we required.
On the other hand, the transcritional rate of the RBS in Rec-PhoA/CsgA (Addgene #170787)[6] was approximately 700, and it appeared to meet our requirements. Referring to that order of magnitude, we newly designed an RBS for BIND-PETase (WT) with a transcriptional rate of 800 using the RBS Calculator.
As mentioned later, this optimized RBS was sufficient to induce the expression of CsgA-bearPETase.
Molecular Cloning
We used NEBuilder HiFi DNA Assembly [7] to obtain plasmids encoding BIND-bearPETase. The DNA fragments encoding bearPETase were prepared with Gene Fragments Synthesis Service (Twist Bioscience).
After culturing and miniprepping, we ran electrophoresis, observing bands near the expected size. Sequence analysis confirmed the correct plasmid sequences.
Western Blotting
Samples induced for the expression of CsgA-bearPETase by IPTG were lysed, and when subjected to Western Blotting using His-Tag as the primary antibody, a clear band was observed around 45 kDa, confirming the overexpression of the target protein. For detailed protocols of the lysis, refer to our wiki, Experiments.
Functional Characterization
A total of 7 wet experiments were conducted to thoroughly investigate the function of BIND-bearPETase. During this process, we compared BIND-bearPETase with its ancestor sequence BIND-PETase (WT) (BBa_K5436130), BIND-duraPETase (BBa_K5436133), and BIND-PETase (ID23) (BBa_K5436123), which is created with a similar design strategy. The results are documented below.
On the Wiki, BIND-bearPETase was evaluated by comparing it with numerous variants not shown here. The process is detailed in the Engineering Success section of our wiki.
Curli Fiber Formation Assay
The formation of Curli fibers of BIND-bearPETase was quantitatively measured. Whether Curli fibers are formed correctly is crucial for the enzyme's stability and reusability.
After centrifuging the BIND-bearPETase suspension, the resulting pellet exhibited a robust structure that did not break apart even after multiple pipetting, as shown in Fig. 7. This suggests that the formation of Curli fibers due to the overexpression of CsgA-bearPETase led to the development of a biofilm structure in E. coli.
In the Curli Fiber Formation Assay, Congo Red dye is used to stain Curli fibers, followed by centrifugation to form a pellet. Subsequently, the absorbance of the supernatant is measured to quantify the formation of Curli fibers. If the Congo Red dye is incorporated into the pellet and the supernatant appears pale, it can be confirmed that Curli fibers have been properly formed.
The results of Congo Red staining for BIND-bearPETase are shown in Fig. 8. It can be observed that Curli fibers are formed and stained in a manner dependent on the presence of BIND-bearPETase.
Next, the absorbance of the supernatant was measured and compared between BIND-bearPETase and other variants (Fig. 9).
Although BIND-bearPETase exhibited lower Curli fiber formation ability compared to BIND-PETase (WT),it had a higher Curli fiber formation ability than BIND-duraPETase, which is ancient of BIND-bearPETase. Additionally, it was found that BIND-bearPETase and BIND-PETase (ID23) possess a similar level of Curli fiber formation ability.
Based on these results, it can be concluded that bearPETase is more suited for the BIND-System in terms of Curli fiber formation ability among the many improved PETases.
pNPB Hydrolysis Assay
The activity of BIND-bearPETase was investigated in an easy way(Fig. 10). Para-nitrophenyl butyrate (pNPB) produces yellow para-nitrophenol (pNP) upon hydrolysis, and we measured this product. However, the magnitude of hydrolytic activity against pNPB does not necessarily correspond to the activity against PET polymers.
Therefore, it is important to note that the pNPB Hydrolysis Assay only provides a simplified assessment of activity. (As will be discussed later section of PET Bottle Powder Degradation Assay, BIND-bearPETase demonstrated the highest practical degradation of PET among these variants.)
It was confirmed that the activities of BIND-bearPETase and BIND-PETase (ID23) increased compared to their ancestor sequences, BIND-PETase (WT) and BIND-duraPETase. BIND-bearPETase and BIND-PETase (ID23) designed by Waseda-Tokyo demonstrated superior performance, suggesting they possess more advantageous features for the practical application of PETase.
Storage Activity Assay & Reusability Assay
Here, we document the experimental results that verify the strengths of BIND-bearPETase regarding the stability and reusability of the enzyme in the social implementation of PETase.
Storage Activity Assay
Since various BIND-PETases are whole-cell biocatalysts utilizing live E. coli, proper storage conditions allow for protein expression and bacterial growth, which can maintain or enhance their activity.
The activities of BIND-bearPETase were evaluated on days 0, 5, and 11 after expression using the pNPB Hydrolysis Assay (Fig. 12). Additionally, we assessed the increase in activity when the storage temperature was changed to either 4°C or room temperature.
During storage, both BIND-bearPETase and BIND-PETase (ID23) exhibited a greater increase in activity over time compared to BIND-PETase (WT) and BIND-duraPETase.
When stored at room temperature, BIND-bearPETase showed the highest increase in activity. These results suggest that BIND-bearPETase has greater convenience in storage compared to other BIND-PETases, making it advantageous for practical applications."
Reusability Assay
BIND-bearPETase could be reused three times after a single reaction, with the presence of activity confirmed through the pNPB Hydrolysis Assay. The activity after reuse was also observed for BIND-PETase (WT) and other variants (Fig. 13).
It was observed that the activity increased after reuse. This may be due to the contamination of the reaction product, pNP, during the collecting stage of BIND-PETases. In this measurement, it was inevitably difficult to accurately assess the reusability because pNP contaminated the reaction system.
However, we attempted to conduct washing operations as thoroughly as possible to achieve the most accurate measurements. Additionally, the promotion of PETase enzyme folding due to the initial reaction may also contribute to the observed increase in activity.
BIND-duraPETase, BIND-PETase (ID23), and BIND-bearPETase exhibited an increase in activity during reuse. While the exact reasons for the activity increase upon reuse could not be identified, it was confirmed that at least BIND-bearPETase does not significantly lose activity even after reuse, indicating its advantage for practical applications.
Plastic Pellet Degradation Assay
Waseda-Tokyo 2024 evaluated the practical degradation activity of BIND-bearPETase. In this process, composite plastic pellets (PETPEPP) used in actual recycling plants and single-material pellets (PET(N)) were utilized as substrates.
After adding BIND-bearPETase suspension to the reaction system at pH 7.0 and pH 9.0 and allowing it to act for five days, mass reduction was confirmed in both types of pellets. The negative control did not show any weight loss (data not shown). For comparison, BIND-PETase (ID23) was also included.
Waseda-Tokyo 2024 quantified the products TPA, MHET, and BHET, generated by BIND-bearPETase, using High-Performance Liquid Chromatography (HPLC).
PET bottles, commonly used in everyday life, were ground with sandpaper, and BIND-bearPETase was applied. In addition to pH 7.0, the reaction was also carried out at pH 9.0, as many PETases are reported to have optimal conditions at pH 8.5 or higher [8]. The results were measured 1 day and 3 days after the reaction.
In this way, it was confirmed that the products TPA, MHET, and BHET were generated by BIND-bearPETase. Additionally, it was suggested that the optimal pH for BIND-bearPETase is also pH 9.0.
Furthermore, we quantitatively compared the amounts of these degradation products (Fig. 17). Contrary to the pNPB hydrolysis assay mentioned earlier, BIND-bearPETase degraded PET bottle powder more effectively than BIND-PETase (ID23). BIND-bearPETase exhibited 10 times the activity of its ancestor BIND-duraPETase and 1.5 times that of its sibling BIND-PETase (ID23). These findings suggest that bearPETase, developed by Waseda-Tokyo, is well-suited for the BIND-System and demonstrates high practical activity.
In Silico Energy Simulation
We conducted computational characterization of bearPETase in addition to the Wet experiments. The tools we used are as follows:
- AutoDock Vina [^9]
- PyRosetta [^10]
- FoldX [^11]
AutoDock Vinaが出力するエネルギーの値から結合親和性を評価することができる。エネルギーが低いほど結合親和性が高く、結合親和性が高ければ実際のWet実験で活性が高くなることが期待できる。PyRosettaが出力するエネルギーの値からBIND-PETaseの構造の安定性を評価することができる。FoldXは...
AutoDock Vina
Method
AutoDock Vinaを用いた検証ではPET2量体のPDBQTファイルと PETase(WT)、 duraPETase、PETase(ID23)、bearPETase(ID24)のPDBQTファイルを用意して分子ドッキングを実行した。BIND-PETaseではなくPETaseに対して検証を行った理由は、 BIND-PETaseに対して検証すると計算量が増えるから、実際に酵素活性と関係がある部分はPETaseの部分であるからである。PET2量体のPDBQTファイルとした理由の一つはPETaseはPETを分解するタンパク質であるのでPET分子が2量体以上でないと現実に即していないからである。もう一つはエネルギーの比較であれば2量体で十分であるからである。AutoDock Vinaが出力したエネルギーの値を用いてbearPETaseの結合親和性を評価した。
Results
各PETaseに対して分子ドッキングを行った結果AutoDock Vinaが出力したエネルギーの値を以下の**Table. 1.に示す。グラフをFig. 17.**に示す。 **Fig. 17.**は上がマイナスの値になっていることに注意する。
PETase variants | Affinity (kJ/mol) |
---|---|
PETase(WT) | -5.3 |
duraPETase | -3.7 |
PETase(ID23) | -5.4 |
BearPETase(ID24) | -5.3 |
**Table. 1.とFig. 17.**より、bearPETaseはduraPETaseより結合親和性が高いことがわかる。つまりWet実験でも活性が高くなることが期待できる。実際、**Fig. 15.**に示されているようにbearPETaseはduraPETaseより活性が高くなっており、**シミュレーション通りの結果となっている。**一方でbearPETaseのエネルギーの値はPETase(WT)エネルギーの値と同じでPETase(ID23)のエネルギーの値より高くなっており **Fig. 15.**の結果に反する。この結果について考察する。 PETaseがPET分子を分解する過程は次のようになっている。
- PET分子がPETaseにドッキングする
- PETaseがPET分子を分解する
- PET分子がPETaseからリリースされる
しかし、AutoDock Vinaのような分子ドッキングツールは1.のシミュレーションのみを行っている。したがって2.と3.の段階の影響により**Fig. 15.とFig. 17.**で異なる結果が得られたのだと考えられる。
ただ、少なくともbearPETaseはduraPETaseより活性が高くなることが期待できるということは言えるであろう。
最後に、bearPETaseとPET分子が結合している様子を以下に示す。
Fig. 18.とFig. 19.の中で赤い点で示されているのがbearPETaseの結合部位である。PET分子はbearPETaseの結合部位にうまく結合している。したがってbearPETaseの結合親和性が視覚的にも示された。
これらの結果より**bearPETaseは祖先であるduraPETaseよりも結合親和性が高いことがコンピュータシミュレーションの観点から示された。**そしてWet実験でもduraPETaseより活性が高いことが大いに期待できる。コンピュータシミュレーション上ではPETase(WT)とbearPETaseの結合親和性は等しいという結果となったが、実際にはduraPETaseはPETase(WT)より活性が高いことが示されているのでbearPETaseはPETase(WT)よりも活性が高くなるであろうことがこの結果から予想できる。
PyRosetta
Method
PyRosettaを用いた検証ではBIND-PETase(WT)、 BIND-duraPETase、 BIND-PETase(ID23)、 BIND-bearPETase(ID24)のPDBファイルを入力し、PyRosettaが出力する自由エネルギーの値を用いてBIND-bearPETaseの構造の安定性を評価した。AutoDock Vinaの場合と異なり、構造の安定性はBIND-PETase全体で評価する必要があることからBIND-PETaseを用いて検証を行った。
Results
各BIND-PETaseに対してPyRosettaが出力したエネルギーの値を以下の**Table. 2.に示す。グラフをFig. 20.**に示す。 **Fig. 20.とFig. 21.**は上がマイナスの値になっていることに注意する。Table. 2.とFig. 20.,**Fig. 21.**においてvanillaの項は入力したPDBファイルの状態で出力された値を示す。relaxedの項は各BIND-PETaseの構造を、エネルギーが最小になるように変更した後にPyRosettaに入力し、出力された値を示した。
BIND-PETase variants | vanilla (REU) | relaxed (REU) |
---|---|---|
BIND-PETase(WT) | -67.9058 | -697.097 |
BIND-duraPETase | -120.836 | -1128.91 |
BIND-PETase(ID23) | 327.490 | -1154.16 |
BIND-bearPETase(ID24) | -157.666 | -1172.45 |
Table. 2.とFig. 20.とFig. 21.から、PyRosettaの出力するエネルギーの値はBIND-bearPETaseが最も低いことがわかった。これはBIND-PETase(WT)、祖先であるBIND-duraPETase、兄弟であるBIND-PETase(ID23)よりもBIND-bearPETaseの構造が安定であることを示している。実際にPETaseを用いてPET分子を分解する時には構造が安定である方が良いであろう。よってPyRosettaが出力するエネルギーの値よりBIND-bearPETaseの優位性が示された。
FoldXを用いた検証では...
Mathematical Model
Membrane transport model
PET degradation efficiency model
執筆担当者:@Yuto TORIYAMA @Joseph Yokobori 調整お願いします
膜外輸送モデル+PET分解効率のモデル
Wetで検証できなかったサーフェスディプレイ
PETの長さ, Fiberの長さからPET分解量を計算する
本パーツを実装するにあたって、大腸菌内での物質発現からPET分解につながる過程を示す必要ある。そのため、modelingによって膜外輸送の過程からPET分解までの一連の過程が成立することを示した。
膜外輸送において、BIND-PETaseにおけるcsgAの発現だけでなく、大腸菌内にはcurli fiberを形成するために必要な分子を発現できる仕組みが存在する。この機構を介してcsgAが大腸菌外に移動するため、この流れを定量化した。次に膜外輸送されたcsgAがを形成し、そこに結合したPETaseがPET分解を行う。PETの長さとfiberの長さに応じたPET分解量を定量化した。
一連の流れの定量化により、本プロジェクトで打ち出したPET分解が十分機能することを評価できた。
Conclusion
We, Waseda-Tokyo 2024 team has developed a novel enzyme system called "BIND-bearPETase," which makes the use of PETase more accessible and efficient. This technology can also be applied to other enzymes, suggesting that the BIND-System can reduce enzyme purification costs and improve convenience.
In Wet Experiments, it was confirmed that BIND-bearPETase has higher hydrolytic activity compared to other BIND-PETase variants. Additionally, experiments verified that BIND-bearPETase does not require purification, can be stored for approximately two weeks, and can be reused up to three times. Furthermore, it was demonstrated that BIND-bearPETase can be applied to PET from everyday PET bottles, showcasing the practical potential of this part.
In Dry Experiments, energy simulations were used to verify the stability of PETase-PET docking and the structural stability, which could not be confirmed in Wet Experiments. Moreover, a mathematical model allowed for the examination of outer membrane transport.
The detailed documentation of BIND-bearPETase will serve as a crucial guide for future iGEMers who wish to use or modify and apply this system.
References
Nguyen, P. et al. (2014) Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945. doi: 10.1038/ncomms5945 ↩︎
Zhu B. et al. (2022) Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase, Environ. Sci. Technol. Lett. 9(7), 650-657, doi: 10.1021/acs.estlett.2c00332 ↩︎
L Shi et al.(2023) Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. Angewandte Chemie International Edition 62(14) doi: 10.1002/anie.202218390 ↩︎
Y Cui et al.(2021) Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catal. 11(3), 1340–1350. doi: 10.1021/acscatal.0c05126 ↩︎
New England Biolabs. NEBuilder® HiFi DNA Assembly Master Mix. https://www.neb.com/ja-jp/products/e2621-nebuilder-hifi-dna-assembly-master-mix. ↩︎
Ahan RE et al.(2019) Cellular Biocatalysts Using Synthetic Genetic Circuits for Prolonged and Durable Enzymatic Activity. Chembiochem.20(14):1799-1809. doi: 10.1002/cbic.201800767. ↩︎
V Pirillo et al.(2023) Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate. The FEBS Jour. 288(16) 4730-4745. doi.org/10.1111/febs.15850. ↩︎
F Kawai et al. (2022) Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. AMB Expr 12(134) doi: 10.1186/s13568-022-01474-y ↩︎