Difference between revisions of "Part:BBa K5436124"

Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K5436124 short</partinfo>
 
<partinfo>BBa_K5436124 short</partinfo>
 +
 +
<span class='h3bb'><h1>Sequence and Features</h1></span>
 +
<p> <b>Molecular weight</b>: 46.6 kDa </p>
 +
<p> Codon optimized for <i>E.coli</i> BL21(DE3) cells.
 +
<partinfo>BBa_K5436124 SequenceAndFeatures</partinfo>
  
 
<html>
 
<html>
<link href="https://static.igem.wiki/teams/5436/parts/parts.css" rel="stylesheet" />
+
<link href="https://static.igem.wiki/teams/5436/common/parts.css" rel="stylesheet" />
 
<body>
 
<body>
 
<style>
 
<style>
 +
.fig-table-caption {
 +
  font-size: 14px;
 +
  color: #555;
 +
  text-align: center;
 +
  padding: 5px;
 +
}
 +
img {
 +
  margin: auto;
 +
  display: block;
 +
}
 +
 
</style>
 
</style>
 +
<div class="znc">
  
<div class="znc "><p>This part was designed for the construction of Whole-cell Biocatalysts 'BIND-bearPETase'. To ensure that this part functions as expected, Waseda-Tokyo2024 thoroughly investigated its properties through wet lab experiments, mathematical modeling, and energetic simulations. Furthermore, this part offers significant utility to the iGEM community by not only addressing the urgent need for improved plastic waste management but also expanding the availability of all enzymes.</p>
+
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/new-composite-parts-bind-bearpetase-grapgical-abstract.png" alt="" width="400"><br>
<h3 id="agenda"><a class="header-anchor-link" href="#agenda" aria-hidden="true"></a> <strong>Agenda</strong></h3>
+
<strong>BIND-bearPETse Graphical Abstract</strong><br>
 +
This part was designed for the construction of Whole-cell Biocatalysts &quot;BIND-bearPETase.&quot; Waseda-Tokyo2024 thoroughly investigated its functionality through wet lab experiments, mathematical modeling, and energetic simulations. Additionally, this part holds great value for the iGEM community by addressing the urgent need for better plastic waste management and expanding any enzyme availability.<br>
 +
<strong>Agenda</strong></p>
 
<ol>
 
<ol>
<li>
+
<li><strong>Overview</strong></li>
<h3 id="overview"><a class="header-anchor-link" href="#overview" aria-hidden="true"></a> <strong>Overview</strong></h3>
+
<li><strong>Components</strong></li>
</li>
+
<li><strong>Cloning &amp; Expression</strong>
<li>
+
<h3 id="components"><a class="header-anchor-link" href="#components" aria-hidden="true"></a> <strong>Components</strong></h3>
+
</li>
+
<li>
+
<h3 id="cloning-%26-expression"><a class="header-anchor-link" href="#cloning-%26-expression" aria-hidden="true"></a> <strong>Cloning &amp; Expression</strong></h3>
+
 
<ul>
 
<ul>
<li>
+
<li><strong>Functional Characterization</strong></li>
<h3 id="functional-characterization"><a class="header-anchor-link" href="#functional-characterization" aria-hidden="true"></a> <strong>Functional Characterization</strong></h3>
+
<li><strong>Curli Fiber Formation Assay</strong></li>
</li>
+
<li><em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></li>
<li>
+
<li><strong>Storage Activity Assay</strong></li>
<h3 id="curli-fiber-formation-assay"><a class="header-anchor-link" href="#curli-fiber-formation-assay" aria-hidden="true"></a> <strong>Curli Fiber Formation Assay</strong></h3>
+
<li><strong>Reusability Assay</strong></li>
</li>
+
<li><strong>PET Bottle Powder Degradation Assay</strong></li>
<li>
+
<li><strong>Plastic Pellet Degradation Assay</strong></li>
<h3 id="pnpb-hydrolysis-assay"><a class="header-anchor-link" href="#pnpb-hydrolysis-assay" aria-hidden="true"></a> <em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></h3>
+
</li>
+
<li>
+
<h3 id="storage-activity-assay"><a class="header-anchor-link" href="#storage-activity-assay" aria-hidden="true"></a> <strong>Storage Activity Assay</strong></h3>
+
</li>
+
<li>
+
<h3 id="reusability-assay"><a class="header-anchor-link" href="#reusability-assay" aria-hidden="true"></a> <strong>Reusability Assay</strong></h3>
+
</li>
+
<li>
+
<h3 id="pet-bottle-powder-degradation-assay"><a class="header-anchor-link" href="#pet-bottle-powder-degradation-assay" aria-hidden="true"></a> <strong>PET Bottle Powder Degradation Assay</strong></h3>
+
</li>
+
<li>
+
<h3 id="plastic-pellet-degradation-assay"><a class="header-anchor-link" href="#plastic-pellet-degradation-assay" aria-hidden="true"></a> <strong>Plastic Pellet Degradation Assay</strong></h3>
+
</li>
+
 
</ul>
 
</ul>
 
</li>
 
</li>
<li>
+
<li><strong>In Silico Energy Simulation</strong>
<h3 id="in-silico-energy-simulation"><a class="header-anchor-link" href="#in-silico-energy-simulation" aria-hidden="true"></a> <strong>In Silico Energy Simulation</strong></h3>
+
 
<ul>
 
<ul>
<li>
+
<li><strong>AutoDock</strong></li>
<h3 id="autodock"><a class="header-anchor-link" href="#autodock" aria-hidden="true"></a> <strong>AutoDock</strong></h3>
+
<li><strong>PyRosetta</strong></li>
</li>
+
<li><strong>FoldX</strong></li>
<li>
+
<li><strong>MACE</strong></li>
<h3 id="pyrosetta"><a class="header-anchor-link" href="#pyrosetta" aria-hidden="true"></a> <strong>PyRosetta</strong></h3>
+
</li>
+
<li>
+
<h3 id="foldx"><a class="header-anchor-link" href="#foldx" aria-hidden="true"></a> <strong>FoldX</strong></h3>
+
</li>
+
<li>
+
<h3 id="mace"><a class="header-anchor-link" href="#mace" aria-hidden="true"></a> <strong>MACE</strong></h3>
+
</li>
+
 
</ul>
 
</ul>
 
</li>
 
</li>
<li>
+
<li><strong>Mathematical Modeling</strong>
<h3 id="mathematical-modeling"><a class="header-anchor-link" href="#mathematical-modeling" aria-hidden="true"></a> <strong>Mathematical Modeling</strong></h3>
+
 
<ul>
 
<ul>
<li>
+
<li><strong>Membrane transport model</strong></li>
<h3 id="membrane-transport-model"><a class="header-anchor-link" href="#membrane-transport-model" aria-hidden="true"></a> <strong>Membrane transport model</strong></h3>
+
<li><strong>PET degradation efficiency model</strong></li>
</li>
+
<li>
+
<h3 id="pet-degradation-efficiency-model"><a class="header-anchor-link" href="#pet-degradation-efficiency-model" aria-hidden="true"></a> <strong>PET degradation efficiency model</strong></h3>
+
</li>
+
 
</ul>
 
</ul>
 
</li>
 
</li>
<li>
+
<li><strong>Conclusion</strong></li>
<h3 id="conclusion"><a class="header-anchor-link" href="#conclusion" aria-hidden="true"></a> <strong>Conclusion</strong></h3>
+
</li>
+
 
</ol>
 
</ol>
<h2 id="overview-1"><a class="header-anchor-link" href="#overview-1" aria-hidden="true"></a> <strong>Overview</strong></h2>
+
<h2 id="overview"><a class="header-anchor-link" href="#overview" aria-hidden="true"></a> <strong>Overview</strong></h2>
<p>We will provide an overview of the function of this part. The E. coli BL21(DE3) strain, into which this part was introduced, demonstrated the ability to degrade PET, a recalcitrant plastic, in the experiments detailed below. This "BIND-bearPETase" offers benefits that address the shortcomings of conventional free PETase.</p>
+
<p>This &quot;BIND-bearPETase&quot; offers benefits that address the shortcomings of conventional free PETase shown below. <img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/1-free-petase-vsbear.png" alt="" width="500"></p>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/1-free-petase-vsbear.png" alt=""></p>
+
 
<div class="fig-table-caption"><p><strong>Fig 1.</strong> The advantages of BIND-bearPETase over free-PETase</p>
 
<div class="fig-table-caption"><p><strong>Fig 1.</strong> The advantages of BIND-bearPETase over free-PETase</p>
 
</div>
 
</div>
<p>This part encodes the CsgA-bearPETase fusion protein. CsgA is an extracellular fibrous structure-forming factor that constructs fibrous structures known as Curli Fibers on the surface of the E. coli membrane. By fusing PETase to CsgA, we enabled the presentation of PETase on the cell membrane surface in a fiber-linked manner.</p>
+
<p>This part encodes the CsgA-bearPETase fusion protein. CsgA is an extracellular fibrous structure-forming factor that constructs Curli Fibers on the surface of the <em>E. coli</em> membrane. By fusing bearPETase to CsgA, we enabled the presentation of bearPETase on the cell membrane surface in a fiber-linked manner.<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/2-bind-petase-24.gif" alt=""></p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/2-bind-petase-24.gif" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig 2.</strong> BIND-bearPETase docking to PET polymer</p>
 
<div class="fig-table-caption"><p><strong>Fig 2.</strong> BIND-bearPETase docking to PET polymer</p>
 
</div>
 
</div>
<p>This enables direct access to substrates without the need for purification, as well as the stabilization of enzyme activity and the reuse of enzymes. This is a technique referred to as the BIND-System <sup class="footnote-ref"><a href="#fn1" id="fnref1">[1]</a></sup>, and whole-cell biocatalysts equipped with PETase are called BIND-PETase <sup class="footnote-ref"><a href="#fn2" id="fnref2">[2]</a></sup>.</p>
+
<p>This enables direct access to substrates without the need for purification, as well as the stabilization of enzyme activity and the reuse of enzymes. This is a technique referred to as the BIND-System [1], and whole-cell biocatalysts equipped with PETase are called BIND-PETase [2].</p>
<p>The key effort in this part was creating the optimal PETase for the BIND-System. BearPETase, uniquely developed by Waseda-Tokyo 2024, combines mutations from depoPETase (Shi et al., 2023) <sup class="footnote-ref"><a href="#fn3" id="fnref3">[3]</a></sup> and duraPETase (Cui et al., 2021) <sup class="footnote-ref"><a href="#fn4" id="fnref4">[4]</a></sup> developed through directed evolution. We generated several variant groups and identified the optimal one through functional comparisons in wet experiments.</p>
+
<p>The key effort in this part was creating “bearPETase” ,the optimal PETase for the BIND-System. BearPETase, uniquely developed by Waseda-Tokyo 2024, combines mutations from depoPETase (Shi et al., 2023) [3] and duraPETase (Cui et al., 2021) [4] developed through directed evolution. We generated several variant groups and identified the optimal one through functional comparisons in wet experiments.</p>
<p>Furthermore, this part significantly contributes the iGEM community by expanding enzyme availability. The BIND-System reduces concerns about purification costs and quality, making them negligible. It also allows for maintaining and reusing proteins with unstable activity. By replacing the bearPETase portion with other BioBricks, any enzyme's use can be simplified.</p>
+
<p>Furthermore, this part significantly contributes to the iGEM community by expanding enzyme availability. As mentioned above, the BIND-System reduces concerns about purification costs and quality, making them negligible. It also allows for maintaining and reusing proteins with unstable activity. By replacing the bearPETase portion with other BioBricks, any enzyme's use can be simplified.</p>
<h2 id="components-1"><a class="header-anchor-link" href="#components-1" aria-hidden="true"></a> <strong>Components</strong></h2>
+
<h2 id="components"><a class="header-anchor-link" href="#components" aria-hidden="true"></a> <strong>Components</strong></h2>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/3-components.png" alt=""></p>
+
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/3-components.png" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 3.</strong> Components of RBS+BIND-bearPETase+6xHis</p>
 
<div class="fig-table-caption"><p><strong>Fig. 3.</strong> Components of RBS+BIND-bearPETase+6xHis</p>
 
</div>
 
</div>
<ol>
+
<p><strong>I. Optimized RBS for BIND-System (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436005" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436005</a>)</strong><br>
<li>Optimized RBS for BIND-System (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436005" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436005</a>)</li>
+
This RBS is designed to efficiently drive the BIND-System. In some existing BioBricks, inappropriate RBS strength can either overload E. coli with excessive expression or result in no expression. We've designed an RBS to optimize the amount of CsgA displayed on E. coli’s surface as components of curli fibers, which will aid future iGEMers using the BIND-System.<br>
</ol>
+
<strong>II. csgA-taa(Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436006" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436006</a>)</strong><br>
<p>This RBS is designed to efficiently drive the BIND-System. In some existing BioBricks, inappropriate RBS strength can either overload E. coli with excessive expression or result in no expression. We've designed an RBS to optimize the amount of CsgA displayed on E. coli’s surface as components of curli fibers, which will aid future iGEMers using the BIND-System.</p>
+
CsgA-taa is a modified version of BBa_K1583000 from iGEM15_TU_Delft, with the stop codon removed, enabling the expression of the desired protein in a fused state after the Curli fiber formation factor CsgA.<br>
<ol start="2">
+
<strong>III. BamHI_Linker (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436020" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436020</a>)</strong><br>
<li>csgA-taa(Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436006" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436006</a>)</li>
+
This uses the BamHI recognition site, which consists of 6 nucleotides, directly as a linker. The BamHI recognition site encodes glycine and serine, which are commonly used amino acids in linker sequences.<br>
</ol>
+
<strong>IV. bearPETase (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436015" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436015</a>)</strong><br>
<p>CsgA-taa is a modified version of BBa_K1583000 from iGEM15_TU_Delft, with the stop codon removed, enabling the expression of the desired protein in a fused state after the Curli fiber formation factor CsgA.</p>
+
BearPETase was rationally designed by Waseda-Tokyo 2024 to enhance its enzymatic activity. As shown below, we confirmed that its enzymatic activity surpassed that of existing variants. The existing PETase variants include depoPETase and duraPETase, and combining both was expected to improve enzymatic activity. Based on that consideration, we created 81 combinations, excluding the overlapping mutations Q119Y and Q119R, and generated 3D structures using AlphaFold 2, selecting those with stable structures.<br>
<ol start="3">
+
<strong>V. 6x HisTag (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436021" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436021</a>)</strong><br>
<li>BamHI_Linker (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436020" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436020</a>)</li>
+
It is useful in protein purification and also beneficial for Western blotting, where anti-His Tag antibodies are used as primary antibodies.</p>
</ol>
+
<h2 id="cloning-%26-expression"><a class="header-anchor-link" href="#cloning-%26-expression" aria-hidden="true"></a> <strong>Cloning &amp; Expression</strong></h2>
<p>This uses the BamHI recognition site, which consists of 6 nucleotides, directly as a linker. The BamHI recognition site encodes glycine and serine, which are commonly used amino acids in linker sequences.</p>
+
<ol start="4">
+
<li>bearPETase (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436015" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436015</a> )</li>
+
</ol>
+
<p>BearPETase was rationally designed by Waseda-Tokyo 2024 to enhance its enzymatic activity. As shown below, we confirmed that its enzymatic activity surpassed that of existing variants. The existing PETase variants include depoPETase and duraPETase, and combining both was expected to improve enzymatic activity. Based on that consideration, we created 81 combinations, excluding the overlapping mutations Q119Y and Q119R, and generated 3D structures using AlphaFold 2, selecting those with stable structures.</p>
+
<ol start="5">
+
<li>6x HisTag (Waseda-Tokyo2024, <a href="https://parts.igem.org/Part:BBa_K5436021" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436021</a>)</li>
+
</ol>
+
<p>It is useful in protein purification and also beneficial for Western blotting, where anti-His Tag antibodies are used as primary antibodies.</p>
+
<h2 id="cloning-%26-expression-1"><a class="header-anchor-link" href="#cloning-%26-expression-1" aria-hidden="true"></a> <strong>Cloning &amp; Expression</strong></h2>
+
 
<h3 id="molecular-cloning"><a class="header-anchor-link" href="#molecular-cloning" aria-hidden="true"></a> <strong>Molecular Cloning</strong></h3>
 
<h3 id="molecular-cloning"><a class="header-anchor-link" href="#molecular-cloning" aria-hidden="true"></a> <strong>Molecular Cloning</strong></h3>
<p>We used NEBuilder HiFi DNA Assembly [^5] to obtain plasmids encoding BIND-bearPETase. The DNA fragments encoding bearPETase were prepared with Gene Fragments Synthesis Service (Twist Bioscience).</p>
+
<p>We used NEBuilder HiFi DNA Assembly [5] to obtain plasmids encoding BIND-bearPETase. The DNA fragments encoding bearPETase were prepared with Gene Fragments Synthesis Service (Twist Bioscience).</p>
 
<p>After culturing and miniprepping, we ran electrophoresis, observing bands near the expected size. Sequence analysis confirmed the correct plasmid sequences.</p>
 
<p>After culturing and miniprepping, we ran electrophoresis, observing bands near the expected size. Sequence analysis confirmed the correct plasmid sequences.</p>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/4-cloning.png" alt=""></p>
+
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/4-cloning.png" alt="" width="500"></p>
<div class="fig-table-caption"><p><strong>Fig. 4.</strong> Electrophoresis and Plasmid map of the pMAL-c4X-RBS+BIND-bearPETase<br>
+
<div class="fig-table-caption"><p><strong>Fig. 4.</strong> Electrophoresis and Plasmid map of the pMAL-c4X-RBS+BIND-bearPETase</p>
<strong>:::</strong></p>
+
</div>
 
<h3 id="western-blotting"><a class="header-anchor-link" href="#western-blotting" aria-hidden="true"></a> <strong>Western Blotting</strong></h3>
 
<h3 id="western-blotting"><a class="header-anchor-link" href="#western-blotting" aria-hidden="true"></a> <strong>Western Blotting</strong></h3>
<p>IPTGによってBIND-bearPETaseの発現誘導をしたサンプルを破砕し、His-Tagを一次抗体としてWestern Blottingすると約45 kDa付近にはっきりとバンドが確認され、目的のタンパク質の過剰発現を確認できた。破砕の詳しいプロトコルは、<a href="https://2024.igem.wiki/waseda-tokyo/experiments" target="_blank" rel="nofollow noopener noreferrer">Experimentsタブ</a>を参照する。</p>
+
<p>Samples induced for the expression of CsgA-bearPETase by IPTG were lysed, and when subjected to Western Blotting using His-Tag as the primary antibody, a clear band was observed around 45 kDa, confirming the overexpression of the target protein. For detailed protocols of the lysis, refer to our wiki, <a href="https://2024.igem.wiki/waseda-tokyo/experiments" target="_blank" rel="nofollow noopener noreferrer">Experiments tab</a>.<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/5-wb.png" alt=""></p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/5-wb.png" alt="" width="250"></p>
<div class="fig-table-caption"><p><strong>Fig. 5.</strong> BIND-bearPETaseの発現確認(picked up 3 colonies)</p>
+
<div class="fig-table-caption"><p><strong>Fig. 5.</strong> Confirmation of BIND-bearPETase expression (picked up 3 colonies).</p>
 
</div>
 
</div>
</div>
+
<h2 id="functional-characterization"><a class="header-anchor-link" href="#functional-characterization" aria-hidden="true"></a> <strong>Functional Characterization</strong></h2>
<h2 id="functional-characterization-1"><a class="header-anchor-link" href="#functional-characterization-1" aria-hidden="true"></a> <strong>Functional Characterization</strong></h2>
+
<p>A total of 7 wet experiments were conducted to thoroughly investigate the function of BIND-bearPETase. During this process, we compared BIND-bearPETase with its ancestor sequence BIND-PETase (WT) (<a href="https://parts.igem.org/Part:BBa_K5436130" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436130</a>), BIND-duraPETase (<a href="https://parts.igem.org/Part:BBa_K5436133" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436133</a>), and BIND-PETase (ID23) (<a href="https://parts.igem.org/Part:BBa_K5436123" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436123</a>), which is created with a similar design strategy. The results are documented below.</p>
<p>Wet実験でBIND-bearPETaseの機能を調べた。その際、BIND-bearPETaseの祖先配列であるBIND-PETase(WT)(<a href="https://parts.igem.org/Part:BBa_K5436130" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436130</a>), BIND-duraPETase(BBa_K5436133)と、同様の設計思想で創られたBIND-PETase(ID23)(<a href="https://parts.igem.org/Part:BBa_K5436123" target="_blank" rel="nofollow noopener noreferrer">BBa_K5436123</a>)とBIND-bearPETaseを比較した。その結果を以下にドキュメントする。</p>
+
<p>On the Wiki, BIND-bearPETase was evaluated by comparing it with numerous variants not shown here. The process is detailed in the <a href="https://2024.igem.wiki/waseda-tokyo/engineering/" target="_blank" rel="nofollow noopener noreferrer">Engineering Success</a> section of the our wiki.</p>
<h3 id="curli-fiber-formation-assay-1"><a class="header-anchor-link" href="#curli-fiber-formation-assay-1" aria-hidden="true"></a> <strong>Curli Fiber Formation Assay</strong></h3>
+
<h3 id="curli-fiber-formation-assay"><a class="header-anchor-link" href="#curli-fiber-formation-assay" aria-hidden="true"></a> <strong>Curli Fiber Formation Assay</strong></h3>
<p>BIND-bearPETaseのCurli Fiber形成能力を定量的に測った。Curli Fiberが正しく形成されているかどうかは、酵素の安定性や再利用性にとって最重要である。</p>
+
<p>The formation of Curli fibers of BIND-bearPETase was quantitatively measured. Whether Curli fibers are formed correctly is crucial for the enzyme's stability and reusability.</p>
<p>BIND-bearPETaseを発現した大腸菌を遠心し、生じたペレットは、Fig. 6のように複数回ピペッティングしても崩れない強固な構造を持っていた。これは、BIND-bearPETaseの過剰発現によるCurli Fiberの形成により、大腸菌がバイオフィルム構造を取っていたと考えられる。</p>
+
<p>After centrifuging the BIND-bearPETase suspension, the resulting pellet exhibited a robust structure that did not break apart even after multiple pipetting, as shown in Fig. 6. This suggests that the formation of Curli fibers due to the overexpression of CsgA-bearPETase led to the development of a biofilm structure in <em>E. coli</em>.</p>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/6-pellet.gif" alt=""></p>
+
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/6-pellet.gif" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 6.</strong>  Robust pellet of BIND-bearPETase</p>
 
<div class="fig-table-caption"><p><strong>Fig. 6.</strong>  Robust pellet of BIND-bearPETase</p>
 
</div>
 
</div>
<p>Curli Fiber Formation Assayでは、Congo Red染料を用いてCurli fiberを染色し、遠心し、上清の色を確認する。ペレットにCongo Red色素が取り込まれて、上清が薄いならば、Curli Fiberが正常に形成されたことが確認できたといえる。</p>
+
<p>In the Curli Fiber Formation Assay, Congo Red dye is used to stain Curli fibers, followed by centrifugation to form a pellet. Subsequently, the absorbance of the supernatant is measured to quantify the formation of Curli fibers. If the Congo Red dye is incorporated into the pellet and the supernatant appears pale, it can be confirmed that Curli fibers have been properly formed.</p>
<p>BIND-bearPETaseにおける観察結果がFig.6である。Fig.6から、BIND-bearPETaseの存在依存にして、Curli Fiberが生じ、染色されている事が分かる。</p>
+
<p>The results of Congo Red staining for BIND-bearPETase are shown in Fig. 7. It can be observed that Curli fibers are formed and stained in a manner dependent on the presence of BIND-bearPETase.<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/7-cr-obs.png" alt=""></p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/7-cr-obs.png" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 7.</strong>  Curli Fiber Staining of BIND-bearPETase</p>
 
<div class="fig-table-caption"><p><strong>Fig. 7.</strong>  Curli Fiber Staining of BIND-bearPETase</p>
 
</div>
 
</div>
<p>更に、定性的な判断だけではなく、上清の吸光度を計測し、BIND-bearPETaseと他の変異体と比較した (Fig. 8)</p>
+
<p>Next, the absorbance of the supernatant was measured and compared between BIND-bearPETase and other variants (Fig. 8).<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/8-curli-fiber-formation.png" alt=""></p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/8-curli-fiber-formation.png" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 8.</strong> Intensity of Curli Fiber Formation</p>
 
<div class="fig-table-caption"><p><strong>Fig. 8.</strong> Intensity of Curli Fiber Formation</p>
 
</div>
 
</div>
<p>BIND-bearPETaseはBIND-PETase(WT) よりCurli Fiber形成能が低い一方で、BIND-duraPETaseよりもCurli Fiber形成能が高かった。また、BIND-bearPETaseとBIND-PETase(ID23)は、同じ程度のCurli Fiber形成能力を持っている事が分かった。</p>
+
<p>Although BIND-bearPETase exhibited lower Curli fiber formation ability compared to BIND-PETase (WT),it had a higher Curli fiber formation ability than BIND-duraPETase, which is ancient of BIND-bearPETase. Additionally, it was found that BIND-bearPETase and BIND-PETase (ID23) possess a similar level of Curli fiber formation ability.</p>
<p>これらの結果から、BIND-bearPETaseは、Curli Fiber形成能力の観点で、BIND-duraPETase よりも、BIND-Systemにより適合したPETaseであると言える。野生型配列のCurli形成能は、変異体よりも高かったが、改善されたPETaseをBIND-PETaseを実用化するという面では、bearPETaseが有利であると考えられる。</p>
+
<p>Based on these results, it can be concluded that bearPETase is more suited for the BIND-System in terms of Curli fiber formation ability among the many improved PETases.</p>
<p>他にも、ここに示していない数多くの変異体とBIND-bearPETaseを比較しながら、BIND-bearPETaseを評価した。その過程は、Waseda-Tokyo2024のWikiの<a href="https://2024.igem.wiki/waseda-tokyo/engineering/" target="_blank" rel="nofollow noopener noreferrer">Engineering Success</a>に示されている。</p>
+
<h3 id="pnpb-hydrolysis-assay"><a class="header-anchor-link" href="#pnpb-hydrolysis-assay" aria-hidden="true"></a> <em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></h3>
<h3 id="pnpb-hydrolysis-assay-1"><a class="header-anchor-link" href="#pnpb-hydrolysis-assay-1" aria-hidden="true"></a> <em><strong>p</strong></em><strong>NPB Hydrolysis Assay</strong></h3>
+
<p>The activity of BIND-bearPETase was investigated in an easy way(Fig. 9). <em>Para</em>-nitrophenyl butyrate (pNPB) produces yellow <em>para</em>-nitrophenol (pNP) upon hydrolysis, and we measured this product. However, the magnitude of hydrolytic activity against <em>p</em>NPB does not necessarily correspond to the activity against PET polymers.<br>
<p>BIND-bearPETaseの活性を簡易的に評価した(Fig. 8)<em>para</em>-nitrophenyl butyrate(<em>p</em>NPB)は加水分解されると黄色の<em>para</em>-nitrophenol(<em>p</em>NP)が生じ、私たちはこれを測定した。ただし、pNPBに対する加水分解活性の大小は、必ずしもPET polymerに対する活性の大小と一致しない場合もある。その為、<em>p</em>NPB Hydrolysis Assayでは、活性の簡易的な評価しかできないころに注意したい。(後述するPET Bottle Powder Degradation Assayで、最もPETを実用的に分解したのは、BIND-bearPETaseの方であった。)</p>
+
Therefore, it is important to note that the pNPB Hydrolysis Assay only provides a simplified assessment of activity. (As will be discussed later section of PET Bottle Powder Degradation Assay, BIND-bearPETase demonstrated the highest practical degradation of PET among these variants.)<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/9-pnpb-assay.png" alt=""></p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/9-pnpb-assay.png" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 9.</strong> <em>p</em>NPB Hydrolysis Assay of BIND-PETase variants, including BIND-bearPETase</p>
 
<div class="fig-table-caption"><p><strong>Fig. 9.</strong> <em>p</em>NPB Hydrolysis Assay of BIND-PETase variants, including BIND-bearPETase</p>
 
</div>
 
</div>
<p>BIND-bearPETaseとBIND-PETase(ID23)の活性は、祖先配列であるBIND-PETase(WT)、BIND-duraPETaseに比べて上昇している事が確認できた。BIND-duraPETaseは、WTよりも活性が高くなるように、設計されていたが、Waseda-TokyoがデザインしたBIND-bearPETaseおよびBIND-PETase(ID23)は、それらを凌駕する性能を持ち、PETaseの実用化を目指す上でより有利な特徴を持つことが示唆された。</p>
+
<p>It was confirmed that the activities of BIND-bearPETase and BIND-PETase (ID23) increased compared to their ancestor sequences, BIND-PETase (WT) and BIND-duraPETase. BIND-bearPETase and BIND-PETase (ID23) designed by Waseda-Tokyo demonstrated superior performance, suggesting they possess more advantageous features for the practical application of PETase.</p>
<h3 id=""><a class="header-anchor-link" href="#" aria-hidden="true"></a> </h3>
+
 
<h3 id="storage-activity-assay-%26-reusability-assay"><a class="header-anchor-link" href="#storage-activity-assay-%26-reusability-assay" aria-hidden="true"></a> <strong>Storage Activity Assay &amp; Reusability Assay</strong></h3>
 
<h3 id="storage-activity-assay-%26-reusability-assay"><a class="header-anchor-link" href="#storage-activity-assay-%26-reusability-assay" aria-hidden="true"></a> <strong>Storage Activity Assay &amp; Reusability Assay</strong></h3>
<p>ここでは、BIND-bearPETaseが持つPETaseの社会実装における強みである酵素のStabilityとReusabilityについて、実験的に検証した結果を記録する。</p>
+
<p>Here, we document the experimental results that verify the strengths of BIND-bearPETase regarding the stability and reusability of the enzyme in the social implementation of PETase.<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/10-enphasize-stability-reusa.png" alt=""></p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/10-enphasize-stability-reusa.png" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 10.</strong> The advantages of BIND-bearPETase over free-PETase</p>
 
<div class="fig-table-caption"><p><strong>Fig. 10.</strong> The advantages of BIND-bearPETase over free-PETase</p>
 
</div>
 
</div>
<h4 id="storage-activity-assay-1"><a class="header-anchor-link" href="#storage-activity-assay-1" aria-hidden="true"></a> <strong>Storage Activity Assay</strong></h4>
+
<h4 id="storage-activity-assay"><a class="header-anchor-link" href="#storage-activity-assay" aria-hidden="true"></a> <strong>Storage Activity Assay</strong></h4>
<p>BIND-PETase各種は、生きたまま大腸菌を利用する全細胞型生体触媒であるため、適切な環境で保存することによりタンパク質の発現や大腸菌の増殖が起き、活性が上昇する。BIND-bearPETaseを4℃または室温で保存したときの、発現後0日目、5日目, 11日目の活性を<em>p</em>NPB Hydrolase Assay により評価した(Fig. 10.)。また、保存温度を4°CまたはRTに変化させた際の活性の増大具合を確認した。</p>
+
<p>Since various BIND-PETases are whole-cell biocatalysts utilizing live <em>E. coli</em>, proper storage conditions allow for protein expression and bacterial growth, which can maintain or enhance their activity.<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/11-storage-activity-rt-4c.png" alt=""></p>
+
The activities of BIND-bearPETase were evaluated on days 0, 5, and 11 after expression using the <em>p</em>NPB Hydrolysis Assay (Fig. 11). Additionally, we assessed the increase in activity when the storage temperature was changed to either 4°C or room temperature.<br>
 +
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/11-storage-activity-rt-4c.png" alt="" width="700"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 11.</strong> Storage Activity Assay on different condition; **(A)**4°C, <strong>(B)</strong> RT</p>
 
<div class="fig-table-caption"><p><strong>Fig. 11.</strong> Storage Activity Assay on different condition; **(A)**4°C, <strong>(B)</strong> RT</p>
 
</div>
 
</div>
<p>保存期間中、BIND-PETase(WT), BIND-duraPETaseに比べて、BIND-duraPETaseを元に設計されたBIND-bearPETaseおよびBIND-PETase(ID23)は、時間経過に伴う活性上昇が大きかった。</p>
+
<p>During storage, both BIND-bearPETase and BIND-PETase (ID23) exhibited a greater increase in activity over time compared to BIND-PETase (WT) and BIND-duraPETase.<br>
<p>RTでの保存で、最も活性の上昇が大きかったのはBIND-PETase(ID24)であった。この結果より、BIND-bearPETaseは、BIND-PETase(WT)、BIND-duraPETaseよりも保存による利便性が高く、実用化において有利であるといえる。</p>
+
When stored at room temperature, BIND-bearPETase showed the highest increase in activity. These results suggest that BIND-bearPETase has greater convenience in storage compared to other BIND-PETases, making it advantageous for practical applications.&quot;</p>
<h4 id="reusability-assay-1"><a class="header-anchor-link" href="#reusability-assay-1" aria-hidden="true"></a> <strong>Reusability Assay</strong></h4>
+
<h4 id="reusability-assay"><a class="header-anchor-link" href="#reusability-assay" aria-hidden="true"></a> <strong>Reusability Assay</strong></h4>
<p>BIND-bearPETaseは、一度反応した後、再回収して、3回繰り返し使用しても、 pNPB Hydrolase Assayにより活性の存在を確認する事ができた。BIND-PETase(WT)と他の変異体でも再利用後の活性が確認出来た(Fig. 12)。</p>
+
<p>BIND-bearPETase could be reused three times after a single reaction, with the presence of activity confirmed through the <em>p</em>NPB Hydrolysis Assay. The activity after reuse was also observed for BIND-PETase (WT) and other variants (Fig. 12).<br>
<p>この測定においては、どうしても酵素の再回収の際に、反応した後の産物<em>p</em>NPが混入してしまい、正確に再利用能を測定することは困難であったが、wash操作を可能な限り行い、出来る限り正確な測定を試みた。</p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/12-reusability-assay.png" alt="" width="500"></p>
<p>BIND-PETase(WT)は再利用により活性がやや低下した。一方、BIND-duraPETase, BIND-PETase(ID23)およびBIND-bearPETaseは再利用時に、活性の上昇が見られた。 これには、前回反応産物<em>p</em>NPが、BIND-PETaseの再回収の段階での混入したことが理由として考えられるが、一度反応を行う事によるPETase酵素の折り畳みの促進も活性上昇の理由として考えられる。</p>
+
<p>再利用により活性が上昇した原因は特定できなかったが、少なくともBIND-bearPETaseは、酵素の再利用を行っても著しく活性を損なうことはないことが確認でき、実用化において有利であるといえる。</p>
+
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/12-reusability-assay.png" alt=""></p>
+
 
<div class="fig-table-caption"><p><strong>Fig. 12.</strong> Reusability of BIND-PETase variants including BIND-bearPETase (Cycle1-3)</p>
 
<div class="fig-table-caption"><p><strong>Fig. 12.</strong> Reusability of BIND-PETase variants including BIND-bearPETase (Cycle1-3)</p>
 
</div>
 
</div>
<h3 id="-1"><a class="header-anchor-link" href="#-1" aria-hidden="true"></a> </h3>
+
<p>It was observed that the activity increased after reuse. This may be due to the contamination of the reaction product, <em>p</em>NP, during the collecting stage of BIND-PETases. In this measurement, it was inevitably difficult to accurately assess the reusability because <em>p</em>NP contaminated the reaction system.</p>
<h3 id="pet-bottle-powder-degradation-assay-1"><a class="header-anchor-link" href="#pet-bottle-powder-degradation-assay-1" aria-hidden="true"></a> <strong>PET Bottle Powder Degradation Assay</strong></h3>
+
<p>However, we attempted to conduct washing operations as thoroughly as possible to achieve the most accurate measurements. Additionally, the promotion of PETase enzyme folding due to the initial reaction may also contribute to the observed increase in activity.</p>
<p>**BIND-bearPETaseがPET powderに対し、他の変異体に比較して非常に高い実用的な活性を持っていることを確認した。**生活で誰しもが用いるPETボトルを紙やすりで粉砕し、BIND-bearPETaseを作用させた。PETaseは、PET polymerを分解し、TPA、MHET、BHETを生。。</p>
+
<p>BIND-duraPETase, BIND-PETase (ID23), and BIND-bearPETase exhibited an increase in activity during reuse. While the exact reasons for the activity increase upon reuse could not be identified, it was confirmed that at least BIND-bearPETase does not significantly lose activity even after reuse, indicating its advantage for practical applications.</p>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/13-degradation-flow.jpg" alt=""></p>
+
<h3 id="pet-bottle-powder-degradation-assay"><a class="header-anchor-link" href="#pet-bottle-powder-degradation-assay" aria-hidden="true"></a> <strong>PET Bottle Powder Degradation Assay</strong></h3>
<div class="fig-table-caption"><p><strong>Fig. 13.</strong> Enzymatic hydrolysis of PET by PETases and MHETases<sup class="footnote-ref"><a href="#fn5" id="fnref5">[5]</a></sup></p>
+
<p>It was confirmed that <strong>BIND-bearPETase possesses the highest practical activity against PET powder compared to other variants.</strong> PETase decomposes the PET polymer, resulting in the formation of TPA, MHET, and BHET (Fig. 13).<br>
 +
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/13-degradation-flow.jpg" alt="" width="500"></p>
 +
<div class="fig-table-caption"><p><strong>Fig. 13.</strong> Enzymatic hydrolysis of PET by PETases and MHETases[6]</p>
 
</div>
 
</div>
<p>Waseda-Tokyo2024は、 BIND-bearPETaseがPETを分解することで生じる産物TPA, MHET, BHETをHPLC(High-Performance Liquid Chromatography)によって定量した(Fig. 13.)。なお、反応条件は、pH7.0だけでなく、多くのPETaseは至適条件がpH 8.5以上であるとされておおり<sup class="footnote-ref"><a href="#fn6" id="fnref6">[6]</a></sup>、pH9.0でも反応させた。反応後1日後、3日後の結果を測定した。</p>
+
<p>Waseda-Tokyo 2024 quantified the products TPA, MHET, and BHET, generated by BIND-bearPETase, using High-Performance Liquid Chromatography (HPLC).<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/14-chromatograph.png" alt=""></p>
+
PET bottles, commonly used in everyday life, were ground with sandpaper, and BIND-bearPETase was applied. In addition to pH 7.0, the reaction was also carried out at pH 9.0, as many PETases are reported to have optimal conditions at pH 8.5 or higher[^7]. The results were measured 1 day and 3 days after the reaction.<br>
 +
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/14-chromatograph.png" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 14.</strong> HPLC chromatogram for the degradation products of PET bottle powder by BIND-bearPETase</p>
 
<div class="fig-table-caption"><p><strong>Fig. 14.</strong> HPLC chromatogram for the degradation products of PET bottle powder by BIND-bearPETase</p>
 
</div>
 
</div>
<p>このように、BIND-bearPETaseによって産物TPA, MHET, BHETが生じている事が確認できた。また、最適pHはBIND-bearPETaseにおいても、pH9.0であることが示唆された。</p>
+
<p>In this way, it was confirmed that the products TPA, MHET, and BHET were generated by BIND-bearPETase. Additionally, it was suggested that the optimal pH for BIND-bearPETase is also pH 9.0.</p>
<p>さらに、それらの分解産物の量を定量的に比較した(<strong>Fig. 15.</strong>)。 BIND-bearPETaseと同様の設計思想で作成したBIND-PETase(ID23)と、共通祖先であるBIND-duraPETaseを用いて、その3つを比較した。**その結果、<em>p</em>NPBの分解による簡易的な活性確認の結果とは逆転して、BIND-PETase(ID23)よりも、BIND-bearPETaseが最もPET Bottle Powderを分解した。**BIND-bearPETaseは、祖先であるBIND-duraPETaseの10倍、兄弟であるBIND-PETase(ID23)の1.5倍の活性を持つ。このことから、Waseda-Tokyoが開発したbearPETaseは、BIND-Systemに適合されており、高い実用的活性を示す事が分かった。</p>
+
<p>Furthermore, we quantitatively compared the amounts of these degradation products (Fig. 15). Contrary to the <em>p</em>NPB hydrolysis assay mentioned earlier, <strong>BIND-bearPETase degraded PET bottle powder more effectively than BIND-PETase (ID23). BIND-bearPETase exhibited 10 times the activity of its ancestor BIND-duraPETase and 1.5 times that of its sibling BIND-PETase (ID23).</strong> These findings suggest that bearPETase, developed by Waseda-Tokyo, is well-suited for the BIND-System and demonstrates high practical activity.<br>
<p><img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/15-hplc-tpa-mhet-bhet.png" alt=""></p>
+
<img src="https://static.igem.wiki/teams/5436/bba-k5436124-best-new-composite/15-hplc-tpa-mhet-bhet.png" alt="" width="500"></p>
 
<div class="fig-table-caption"><p><strong>Fig. 15.</strong> Degradation products of PET by BIND-bearPETase under different pH conditions.</p>
 
<div class="fig-table-caption"><p><strong>Fig. 15.</strong> Degradation products of PET by BIND-bearPETase under different pH conditions.</p>
 
</div>
 
</div>
<h3 id="plastic-pellet-degradation-assay-1"><a class="header-anchor-link" href="#plastic-pellet-degradation-assay-1" aria-hidden="true"></a> <strong>Plastic Pellet Degradation Assay</strong></h3>
+
<h3 id="plastic-pellet-degradation-assay"><a class="header-anchor-link" href="#plastic-pellet-degradation-assay" aria-hidden="true"></a> <strong>Plastic Pellet Degradation Assay</strong></h3>
<p>さらに、Waseda-Tokyo2024は、BIND-bearPETaseがどこまで実用的であるかを考察するために、リサイクル工場に存在するプラスチックペレットに対し、BIND-bearPETaseを作用させた。ここでは、ペレットの重量を測定する事で、その分解を確認する事ができた。</p>
+
<p>さらに、Waseda-Tokyo2024は、BIND-bearPETaseがどこまで実用的であるかを考察するために、リサイクル工場に存在するプラスチックペレットに対し、BIND-bearPETaseを作用させた。ここでは、ペレットの重量を測定する事で、その分解を確認する事ができた。<br>
<p>挿入予定</p>
+
挿入予定</p>
<p><strong>Fig. 15.</strong> Degradation of Plastic Pellets</p>
+
<div class="fig-table-caption"><p><strong>Fig. 15.</strong> Degradation of Plastic Pellets</p>
<p>なお、このペレットは、実際にプラスチックリサイクルを行う企業esaに尋ね、譲渡していただくことができた。 We would have liked but I'd like to take this opportunity to thank esa’s kindness.</p>
+
</div>
 +
<p>分解は確認出来たが、その効率は、私たちの求めている効率には達していなかった事が分かった。この実験は、1回限りのデモ検証だった。その為、反応条件の再検討が出来ておらず、今回の反応では、酵素の量を少なめにしていたり、攪拌しながら反応を進めることができず静置だった。その為、少ない量のBIND-PETaseは沈殿し、基質と酵素の接触があまり期待できなかった。</p>
 +
<p>今回は最低限BIND-PETaseがペレットを分解可能であることを示す事ができたので、次回更なる検証をする際には、ペレットとBIND-PETase懸濁液が常に混ぜ合わせられるような系かつ、より高密度でで反応を行う事でBIND-PETaseの真価を見ることができるだろう。<br>
 +
なお、このペレットは、実際にプラスチックリサイクルを行う企業esaに尋ね、譲渡していただくことができた。 この場を借りて感謝申し上げます。</p>
 
<h2 id="simulation"><a class="header-anchor-link" href="#simulation" aria-hidden="true"></a> <strong>Simulation</strong></h2>
 
<h2 id="simulation"><a class="header-anchor-link" href="#simulation" aria-hidden="true"></a> <strong>Simulation</strong></h2>
 
<p>執筆担当者:@Yuto TORIYAMA @Shota Yamamoto 調整お願いします<br>
 
<p>執筆担当者:@Yuto TORIYAMA @Shota Yamamoto 調整お願いします<br>
Line 202: Line 177:
 
<p>私たちは、Wet実験に加えてコンピュータを用いたbear-PETaseの特性検証を行った。私たちが用いたツールは以下の通りである。</p>
 
<p>私たちは、Wet実験に加えてコンピュータを用いたbear-PETaseの特性検証を行った。私たちが用いたツールは以下の通りである。</p>
 
<ul>
 
<ul>
<li>Auto Dock VIna [^8]</li>
+
<li>Auto Dock VIna [8]</li>
<li>PyRosetta [^9]</li>
+
<li>PyRosetta [9]</li>
 
<li>MACE</li>
 
<li>MACE</li>
<li>FoldX [^10]</li>
+
<li>FoldX [10]</li>
 
</ul>
 
</ul>
 
<p>Auto Dock Vinaが出力するエネルギーの値から結合親和性を評価することができる。エネルギーが低いほど結合親和性が高く、結合親和性が高ければ実際のWet実験で活性が高くなることが期待できる。PyRosettaが出力する自由エネルギーの値からPETase(BIND-ETase)の構造の安定性を評価することができる。MACEは私たちが構築した機械学習モデルであり、○○。FoldXは...</p>
 
<p>Auto Dock Vinaが出力するエネルギーの値から結合親和性を評価することができる。エネルギーが低いほど結合親和性が高く、結合親和性が高ければ実際のWet実験で活性が高くなることが期待できる。PyRosettaが出力する自由エネルギーの値からPETase(BIND-ETase)の構造の安定性を評価することができる。MACEは私たちが構築した機械学習モデルであり、○○。FoldXは...</p>
Line 219: Line 194:
 
執筆担当者:@Yuto TORIYAMA @Joseph Yokobori 調整お願いします<br>
 
執筆担当者:@Yuto TORIYAMA @Joseph Yokobori 調整お願いします<br>
 
膜外輸送モデル+PET分解効率のモデル<br>
 
膜外輸送モデル+PET分解効率のモデル<br>
Wetで検証できなかったサーフェスディプレイ<br>
+
Wetで検証できな かったサーフェスディプレイ<br>
 
PETの長さ, Fiberの長さからPET分解量を計算する</p>
 
PETの長さ, Fiberの長さからPET分解量を計算する</p>
 
<p>本パーツを実装するにあたって、大腸菌内での物質発現からPET分解につながる過程を示す必要ある。そのため、modelingによって膜外輸送の過程からPET分解までの一連の過程が成立することを示した。<br>
 
<p>本パーツを実装するにあたって、大腸菌内での物質発現からPET分解につながる過程を示す必要ある。そのため、modelingによって膜外輸送の過程からPET分解までの一連の過程が成立することを示した。<br>
Line 232: Line 207:
 
<p>また、他のBIND-PETase変異体よりも、BIND-bearPETaseが高い加水分解活性を持つことを確認できた。さらにそれは、長期間保存しても、活性が維持されることや、酵素の再利用が可能であることを、実験的に示した。</p>
 
<p>また、他のBIND-PETase変異体よりも、BIND-bearPETaseが高い加水分解活性を持つことを確認できた。さらにそれは、長期間保存しても、活性が維持されることや、酵素の再利用が可能であることを、実験的に示した。</p>
 
<p>さらに、この技術は、PETリサイクルの効率を向上させるだけでなく、他の酵素にも応用可能で、iGEMコミュニティ全体に大きな貢献を果たしています。BIND-Systemにより、酵素の精製コストが削減され、使用の利便性も向上しました。</p>
 
<p>さらに、この技術は、PETリサイクルの効率を向上させるだけでなく、他の酵素にも応用可能で、iGEMコミュニティ全体に大きな貢献を果たしています。BIND-Systemにより、酵素の精製コストが削減され、使用の利便性も向上しました。</p>
<h1 id="references"><a class="header-anchor-link" href="#references" aria-hidden="true"></a> References</h1>
+
<p>[1] Nguyen, P. et al. (2014) Programmable biofilm-based materials from engineered curli nanofibres. <em>Nat. Commun. 5</em>, 4945. doi: 10.1038/ncomms5945<br>
<section class="footnotes">
+
[2] Zhu B. et al. (2022) Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase, <em>Environ. Sci. Technol. Lett. 9</em>(7), 650-657, doi: 10.1021/acs.estlett.2c00332<br>
<ol class="footnotes-list">
+
[3] L Shi et al.(2023) Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. <em>Angewandte Chemie International Edition 62</em>(14) doi: 10.1002/anie.202218390<br>
<li id="fn1" class="footnote-item"><p>Nguyen, P. et al. (2014) Programmable biofilm-based materials from engineered curli nanofibres. <em>Nat. Commun. 5</em>, 4945. doi: 10.1038/ncomms5945 <a href="#fnref1" class="footnote-backref">↩︎</a></p>
+
[4] Y Cui et al.(2021) Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. <em>ACS Catal</em>.  <em>11</em>(3), 1340–1350. doi: 10.1021/acscatal.0c05126<br>
</li>
+
[6] V Pirillo et al.(2023) Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate. <em>The FEBS Jour. 288</em>(16) 4730-4745. doi.org/10.1111/febs.15850.<br>
<li id="fn2" class="footnote-item"><p>Zhu B. et al. (2022) Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase, <em>Environ. Sci. Technol. Lett. 9</em>(7), 650-657, doi: 10.1021/acs.estlett.2c00332 <a href="#fnref2" class="footnote-backref">↩︎</a></p>
+
[7] F Kawai et al. (2022) Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. <em>AMB Expr</em> <em>12</em>(134) doi: 10.1186/s13568-022-01474-y</p>
</li>
+
 
<li id="fn3" class="footnote-item"><p>L Shi et al.(2023) Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. <em>Angewandte Chemie International Edition 62</em>(14) doi: 10.1002/anie.202218390 <a href="#fnref3" class="footnote-backref">↩︎</a></p>
+
 
</li>
+
</div>
<li id="fn4" class="footnote-item"><p>Y Cui et al.(2021) Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. <em>ACS Catal</em>.  <em>11</em>(3), 1340–1350. doi: 10.1021/acscatal.0c05126 <a href="#fnref4" class="footnote-backref">↩︎</a></p>
+
</body>
</li>
+
<li id="fn5" class="footnote-item"><p>V Pirillo et al.(2023) Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate. <em>The FEBS Jour. 288</em>(16) 4730-4745. doi.org/10.1111/febs.15850. <a href="#fnref5" class="footnote-backref">↩︎</a></p>
+
</li>
+
<li id="fn6" class="footnote-item"><p>F Kawai et al. (2022) Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. <em>AMB Expr</em> <em>12</em>(134) doi: 10.1186/s13568-022-01474-y <a href="#fnref6" class="footnote-backref">↩︎</a></p>
+
</li>
+
</ol>
+
</section>
+
</div></body>
+
 
</html>
 
</html>
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K5436124 SequenceAndFeatures</partinfo>
 
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  
 
===Functional Parameters===
 
===Functional Parameters===
<partinfo>BBa_K5436124 parameters</partinfo>
+
<partinfo>BBa_K4905006 parameters</partinfo>
 
<!-- -->
 
<!-- -->

Revision as of 02:45, 29 September 2024

Optimized RBS for BIND-System+BIND-bearPETase+6xHisTag

Sequence and Features

Molecular weight: 46.6 kDa

Codon optimized for E.coli BL21(DE3) cells.

Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 395
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 395
    Illegal NotI site found at 550
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 478
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 395
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 395
    Illegal NgoMIV site found at 622
  • 1000
    COMPATIBLE WITH RFC[1000]


BIND-bearPETse Graphical Abstract
This part was designed for the construction of Whole-cell Biocatalysts "BIND-bearPETase." Waseda-Tokyo2024 thoroughly investigated its functionality through wet lab experiments, mathematical modeling, and energetic simulations. Additionally, this part holds great value for the iGEM community by addressing the urgent need for better plastic waste management and expanding any enzyme availability.
Agenda

  1. Overview
  2. Components
  3. Cloning & Expression
    • Functional Characterization
    • Curli Fiber Formation Assay
    • pNPB Hydrolysis Assay
    • Storage Activity Assay
    • Reusability Assay
    • PET Bottle Powder Degradation Assay
    • Plastic Pellet Degradation Assay
  4. In Silico Energy Simulation
    • AutoDock
    • PyRosetta
    • FoldX
    • MACE
  5. Mathematical Modeling
    • Membrane transport model
    • PET degradation efficiency model
  6. Conclusion

Overview

This "BIND-bearPETase" offers benefits that address the shortcomings of conventional free PETase shown below.

Fig 1. The advantages of BIND-bearPETase over free-PETase

This part encodes the CsgA-bearPETase fusion protein. CsgA is an extracellular fibrous structure-forming factor that constructs Curli Fibers on the surface of the E. coli membrane. By fusing bearPETase to CsgA, we enabled the presentation of bearPETase on the cell membrane surface in a fiber-linked manner.

Fig 2. BIND-bearPETase docking to PET polymer

This enables direct access to substrates without the need for purification, as well as the stabilization of enzyme activity and the reuse of enzymes. This is a technique referred to as the BIND-System [1], and whole-cell biocatalysts equipped with PETase are called BIND-PETase [2].

The key effort in this part was creating “bearPETase” ,the optimal PETase for the BIND-System. BearPETase, uniquely developed by Waseda-Tokyo 2024, combines mutations from depoPETase (Shi et al., 2023) [3] and duraPETase (Cui et al., 2021) [4] developed through directed evolution. We generated several variant groups and identified the optimal one through functional comparisons in wet experiments.

Furthermore, this part significantly contributes to the iGEM community by expanding enzyme availability. As mentioned above, the BIND-System reduces concerns about purification costs and quality, making them negligible. It also allows for maintaining and reusing proteins with unstable activity. By replacing the bearPETase portion with other BioBricks, any enzyme's use can be simplified.

Components

Fig. 3. Components of RBS+BIND-bearPETase+6xHis

I. Optimized RBS for BIND-System (Waseda-Tokyo2024, BBa_K5436005)
This RBS is designed to efficiently drive the BIND-System. In some existing BioBricks, inappropriate RBS strength can either overload E. coli with excessive expression or result in no expression. We've designed an RBS to optimize the amount of CsgA displayed on E. coli’s surface as components of curli fibers, which will aid future iGEMers using the BIND-System.
II. csgA-taa(Waseda-Tokyo2024, BBa_K5436006)
CsgA-taa is a modified version of BBa_K1583000 from iGEM15_TU_Delft, with the stop codon removed, enabling the expression of the desired protein in a fused state after the Curli fiber formation factor CsgA.
III. BamHI_Linker (Waseda-Tokyo2024, BBa_K5436020)
This uses the BamHI recognition site, which consists of 6 nucleotides, directly as a linker. The BamHI recognition site encodes glycine and serine, which are commonly used amino acids in linker sequences.
IV. bearPETase (Waseda-Tokyo2024, BBa_K5436015)
BearPETase was rationally designed by Waseda-Tokyo 2024 to enhance its enzymatic activity. As shown below, we confirmed that its enzymatic activity surpassed that of existing variants. The existing PETase variants include depoPETase and duraPETase, and combining both was expected to improve enzymatic activity. Based on that consideration, we created 81 combinations, excluding the overlapping mutations Q119Y and Q119R, and generated 3D structures using AlphaFold 2, selecting those with stable structures.
V. 6x HisTag (Waseda-Tokyo2024, BBa_K5436021)
It is useful in protein purification and also beneficial for Western blotting, where anti-His Tag antibodies are used as primary antibodies.

Cloning & Expression

Molecular Cloning

We used NEBuilder HiFi DNA Assembly [5] to obtain plasmids encoding BIND-bearPETase. The DNA fragments encoding bearPETase were prepared with Gene Fragments Synthesis Service (Twist Bioscience).

After culturing and miniprepping, we ran electrophoresis, observing bands near the expected size. Sequence analysis confirmed the correct plasmid sequences.

Fig. 4. Electrophoresis and Plasmid map of the pMAL-c4X-RBS+BIND-bearPETase

Western Blotting

Samples induced for the expression of CsgA-bearPETase by IPTG were lysed, and when subjected to Western Blotting using His-Tag as the primary antibody, a clear band was observed around 45 kDa, confirming the overexpression of the target protein. For detailed protocols of the lysis, refer to our wiki, Experiments tab.

Fig. 5. Confirmation of BIND-bearPETase expression (picked up 3 colonies).

Functional Characterization

A total of 7 wet experiments were conducted to thoroughly investigate the function of BIND-bearPETase. During this process, we compared BIND-bearPETase with its ancestor sequence BIND-PETase (WT) (BBa_K5436130), BIND-duraPETase (BBa_K5436133), and BIND-PETase (ID23) (BBa_K5436123), which is created with a similar design strategy. The results are documented below.

On the Wiki, BIND-bearPETase was evaluated by comparing it with numerous variants not shown here. The process is detailed in the Engineering Success section of the our wiki.

Curli Fiber Formation Assay

The formation of Curli fibers of BIND-bearPETase was quantitatively measured. Whether Curli fibers are formed correctly is crucial for the enzyme's stability and reusability.

After centrifuging the BIND-bearPETase suspension, the resulting pellet exhibited a robust structure that did not break apart even after multiple pipetting, as shown in Fig. 6. This suggests that the formation of Curli fibers due to the overexpression of CsgA-bearPETase led to the development of a biofilm structure in E. coli.

Fig. 6. Robust pellet of BIND-bearPETase

In the Curli Fiber Formation Assay, Congo Red dye is used to stain Curli fibers, followed by centrifugation to form a pellet. Subsequently, the absorbance of the supernatant is measured to quantify the formation of Curli fibers. If the Congo Red dye is incorporated into the pellet and the supernatant appears pale, it can be confirmed that Curli fibers have been properly formed.

The results of Congo Red staining for BIND-bearPETase are shown in Fig. 7. It can be observed that Curli fibers are formed and stained in a manner dependent on the presence of BIND-bearPETase.

Fig. 7. Curli Fiber Staining of BIND-bearPETase

Next, the absorbance of the supernatant was measured and compared between BIND-bearPETase and other variants (Fig. 8).

Fig. 8. Intensity of Curli Fiber Formation

Although BIND-bearPETase exhibited lower Curli fiber formation ability compared to BIND-PETase (WT),it had a higher Curli fiber formation ability than BIND-duraPETase, which is ancient of BIND-bearPETase. Additionally, it was found that BIND-bearPETase and BIND-PETase (ID23) possess a similar level of Curli fiber formation ability.

Based on these results, it can be concluded that bearPETase is more suited for the BIND-System in terms of Curli fiber formation ability among the many improved PETases.

pNPB Hydrolysis Assay

The activity of BIND-bearPETase was investigated in an easy way(Fig. 9). Para-nitrophenyl butyrate (pNPB) produces yellow para-nitrophenol (pNP) upon hydrolysis, and we measured this product. However, the magnitude of hydrolytic activity against pNPB does not necessarily correspond to the activity against PET polymers.
Therefore, it is important to note that the pNPB Hydrolysis Assay only provides a simplified assessment of activity. (As will be discussed later section of PET Bottle Powder Degradation Assay, BIND-bearPETase demonstrated the highest practical degradation of PET among these variants.)

Fig. 9. pNPB Hydrolysis Assay of BIND-PETase variants, including BIND-bearPETase

It was confirmed that the activities of BIND-bearPETase and BIND-PETase (ID23) increased compared to their ancestor sequences, BIND-PETase (WT) and BIND-duraPETase. BIND-bearPETase and BIND-PETase (ID23) designed by Waseda-Tokyo demonstrated superior performance, suggesting they possess more advantageous features for the practical application of PETase.

Storage Activity Assay & Reusability Assay

Here, we document the experimental results that verify the strengths of BIND-bearPETase regarding the stability and reusability of the enzyme in the social implementation of PETase.

Fig. 10. The advantages of BIND-bearPETase over free-PETase

Storage Activity Assay

Since various BIND-PETases are whole-cell biocatalysts utilizing live E. coli, proper storage conditions allow for protein expression and bacterial growth, which can maintain or enhance their activity.
The activities of BIND-bearPETase were evaluated on days 0, 5, and 11 after expression using the pNPB Hydrolysis Assay (Fig. 11). Additionally, we assessed the increase in activity when the storage temperature was changed to either 4°C or room temperature.

Fig. 11. Storage Activity Assay on different condition; **(A)**4°C, (B) RT

During storage, both BIND-bearPETase and BIND-PETase (ID23) exhibited a greater increase in activity over time compared to BIND-PETase (WT) and BIND-duraPETase.
When stored at room temperature, BIND-bearPETase showed the highest increase in activity. These results suggest that BIND-bearPETase has greater convenience in storage compared to other BIND-PETases, making it advantageous for practical applications."

Reusability Assay

BIND-bearPETase could be reused three times after a single reaction, with the presence of activity confirmed through the pNPB Hydrolysis Assay. The activity after reuse was also observed for BIND-PETase (WT) and other variants (Fig. 12).

Fig. 12. Reusability of BIND-PETase variants including BIND-bearPETase (Cycle1-3)

It was observed that the activity increased after reuse. This may be due to the contamination of the reaction product, pNP, during the collecting stage of BIND-PETases. In this measurement, it was inevitably difficult to accurately assess the reusability because pNP contaminated the reaction system.

However, we attempted to conduct washing operations as thoroughly as possible to achieve the most accurate measurements. Additionally, the promotion of PETase enzyme folding due to the initial reaction may also contribute to the observed increase in activity.

BIND-duraPETase, BIND-PETase (ID23), and BIND-bearPETase exhibited an increase in activity during reuse. While the exact reasons for the activity increase upon reuse could not be identified, it was confirmed that at least BIND-bearPETase does not significantly lose activity even after reuse, indicating its advantage for practical applications.

PET Bottle Powder Degradation Assay

It was confirmed that BIND-bearPETase possesses the highest practical activity against PET powder compared to other variants. PETase decomposes the PET polymer, resulting in the formation of TPA, MHET, and BHET (Fig. 13).

Fig. 13. Enzymatic hydrolysis of PET by PETases and MHETases[6]

Waseda-Tokyo 2024 quantified the products TPA, MHET, and BHET, generated by BIND-bearPETase, using High-Performance Liquid Chromatography (HPLC).
PET bottles, commonly used in everyday life, were ground with sandpaper, and BIND-bearPETase was applied. In addition to pH 7.0, the reaction was also carried out at pH 9.0, as many PETases are reported to have optimal conditions at pH 8.5 or higher[^7]. The results were measured 1 day and 3 days after the reaction.

Fig. 14. HPLC chromatogram for the degradation products of PET bottle powder by BIND-bearPETase

In this way, it was confirmed that the products TPA, MHET, and BHET were generated by BIND-bearPETase. Additionally, it was suggested that the optimal pH for BIND-bearPETase is also pH 9.0.

Furthermore, we quantitatively compared the amounts of these degradation products (Fig. 15). Contrary to the pNPB hydrolysis assay mentioned earlier, BIND-bearPETase degraded PET bottle powder more effectively than BIND-PETase (ID23). BIND-bearPETase exhibited 10 times the activity of its ancestor BIND-duraPETase and 1.5 times that of its sibling BIND-PETase (ID23). These findings suggest that bearPETase, developed by Waseda-Tokyo, is well-suited for the BIND-System and demonstrates high practical activity.

Fig. 15. Degradation products of PET by BIND-bearPETase under different pH conditions.

Plastic Pellet Degradation Assay

さらに、Waseda-Tokyo2024は、BIND-bearPETaseがどこまで実用的であるかを考察するために、リサイクル工場に存在するプラスチックペレットに対し、BIND-bearPETaseを作用させた。ここでは、ペレットの重量を測定する事で、その分解を確認する事ができた。
挿入予定

Fig. 15. Degradation of Plastic Pellets

分解は確認出来たが、その効率は、私たちの求めている効率には達していなかった事が分かった。この実験は、1回限りのデモ検証だった。その為、反応条件の再検討が出来ておらず、今回の反応では、酵素の量を少なめにしていたり、攪拌しながら反応を進めることができず静置だった。その為、少ない量のBIND-PETaseは沈殿し、基質と酵素の接触があまり期待できなかった。

今回は最低限BIND-PETaseがペレットを分解可能であることを示す事ができたので、次回更なる検証をする際には、ペレットとBIND-PETase懸濁液が常に混ぜ合わせられるような系かつ、より高密度でで反応を行う事でBIND-PETaseの真価を見ることができるだろう。
なお、このペレットは、実際にプラスチックリサイクルを行う企業esaに尋ね、譲渡していただくことができた。 この場を借りて感謝申し上げます。

Simulation

執筆担当者:@Yuto TORIYAMA @Shota Yamamoto 調整お願いします
in silicoスクリーニング
pyRosseta自由エネルギーの値 安定性が高いアピール
分子ドッキング
Auto Dock Vinaが出力するエネルギー 活性が高いアピール
ドッキング図 ちゃんと結合するアピール
MACE

私たちは、Wet実験に加えてコンピュータを用いたbear-PETaseの特性検証を行った。私たちが用いたツールは以下の通りである。

  • Auto Dock VIna [8]
  • PyRosetta [9]
  • MACE
  • FoldX [10]

Auto Dock Vinaが出力するエネルギーの値から結合親和性を評価することができる。エネルギーが低いほど結合親和性が高く、結合親和性が高ければ実際のWet実験で活性が高くなることが期待できる。PyRosettaが出力する自由エネルギーの値からPETase(BIND-ETase)の構造の安定性を評価することができる。MACEは私たちが構築した機械学習モデルであり、○○。FoldXは...

Auto Dock VIna

Method

Auto Dock Vinaを用いた検証ではPET2量体のPDBQTファイルと BIND-PETase(WT)、 BIND-duraPETase、BIND-PETase(ID23)、BIND-bearPETase(ID24)のPDBQTファイルを用意して分子ドッキングを実行した。PET2量体のPDBQTファイルとした理由は、PETaseはPETを分解するタンパク質であるので2量体以上であることが必要であるから、エネルギーの比較であれば2量体で十分であるからである。Auto Dock Vinaが出力したエネルギーの値を用いてbearPETaseの結合親和性を評価した。

Results

Auto Dock Vinaを用いて

PyRosettaを用いた検証では BIND-PETase(WT)、 BIND-duraPETase、BIND-PETase(ID23)、BIND-bearPETase(ID24)のPDBファイルを入力し、PyRosettaが出力する自由エネルギーの値を用いてbearPETaseの構造の安定性を評価した。

MACEを用いた検証では...

FoldXを用いた検証では...

Model
執筆担当者:@Yuto TORIYAMA @Joseph Yokobori 調整お願いします
膜外輸送モデル+PET分解効率のモデル
Wetで検証できな かったサーフェスディプレイ
PETの長さ, Fiberの長さからPET分解量を計算する

本パーツを実装するにあたって、大腸菌内での物質発現からPET分解につながる過程を示す必要ある。そのため、modelingによって膜外輸送の過程からPET分解までの一連の過程が成立することを示した。
膜外輸送において、BIND-PETaseにおけるcsgAの発現だけでなく、大腸菌内にはcurli fiberを形成するために必要な分子を発現できる仕組みが存在する。この機構を介してcsgAが大腸菌外に移動するため、この流れを定量化した。次に膜外輸送されたcsgAがを形成し、そこに結合したPETaseがPET分解を行う。PETの長さとfiberの長さに応じたPET分解量を定量化した。
一連の流れの定量化により、本プロジェクトで打ち出したPET分解が十分機能することを評価できた。

Conclusion
執筆担当者:@Ryojun Hayashizaki
Introductionの要約
結果を元に改めて性質を強調説明

Waseda-Tokyo iGEM 2024チームは、「BIND-bearPETase」という新たな酵素システムを開発し、PET(ポリエチレンテレフタレート)分解を効率化しました。また、この技術は、他の酵素にも応用でき、BIND-Systemを活用することで酵素の精製コストを削減し、利便性を向上できることを示唆しました。

Wet Experimentsでは、精製をせずとも、PETを加水分解する活性が利用可能であることを示した。さらにそれが、日常に存在する身近なPETボトル由来のPETに適用可能であることを示し、このパーツの実用可能性を示した。

また、他のBIND-PETase変異体よりも、BIND-bearPETaseが高い加水分解活性を持つことを確認できた。さらにそれは、長期間保存しても、活性が維持されることや、酵素の再利用が可能であることを、実験的に示した。

さらに、この技術は、PETリサイクルの効率を向上させるだけでなく、他の酵素にも応用可能で、iGEMコミュニティ全体に大きな貢献を果たしています。BIND-Systemにより、酵素の精製コストが削減され、使用の利便性も向上しました。

[1] Nguyen, P. et al. (2014) Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945. doi: 10.1038/ncomms5945
[2] Zhu B. et al. (2022) Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase, Environ. Sci. Technol. Lett. 9(7), 650-657, doi: 10.1021/acs.estlett.2c00332
[3] L Shi et al.(2023) Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution. Angewandte Chemie International Edition 62(14) doi: 10.1002/anie.202218390
[4] Y Cui et al.(2021) Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catal. 11(3), 1340–1350. doi: 10.1021/acscatal.0c05126
[6] V Pirillo et al.(2023) Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate. The FEBS Jour. 288(16) 4730-4745. doi.org/10.1111/febs.15850.
[7] F Kawai et al. (2022) Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. AMB Expr 12(134) doi: 10.1186/s13568-022-01474-y