Coding

Part:BBa_K5237005

Designed by: Marik Mueller   Group: iGEM24_Heidelberg   (2024-09-28)


BBa_K5237005

Half staple: TetR

The Tetracycline Repressor (tetR) is a bacterial transcriptional regulator that binds the tetO operon. TetR can be readily fused with other DNA-binding proteins to form a functional staple for DNA-DNA proximity. We used this part as a component of our simple staple (BBa_K5237006), and also fused it to mNeonGreen as part of a FRET readout system (BBa_K5237007).



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D spatial organization of DNA is well-known to be an important layer of information encoding in particular in eukaryotes, playing a crucial role in gene regulation and hence cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the genomic spatial architecture are limited, hampering the exploration of 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox for rationally engineering genome 3D architectures in living cells, based on various DNA-binding proteins.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as "half staples" that can be combined by scientists to compose entirely new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for successful stapling and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the functionality of our Cas and Basic staples. These consist of staples dependent on cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, dynamic stapling in vivo. We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into target cells, including mammalian cells, with our new interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a luciferase reporter, which allows for straightforward experimental assessment of functional enhancer hijacking events in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome engineering.

Our part collection includes:

DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo
BBa_K5237000 Fusion Guide RNA Entry Vector MbCas12a-SpCas9 Entry vector for simple fgRNA cloning via SapI
BBa_K5237001 Staple Subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
BBa_K5237002 Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple Subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple Subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple Staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple Subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple Subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini Staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237014 Fusion Guide RNA Processing Casette Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs
BBa_K4643003 IncP Origin of Transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promoter, mCherry Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS Binding Casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal Promoter- Firefly Luciferase Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 466

2. Usage and Biology

The tetracycline repressor protein (tetR) is naturally present in gram-negative bacteria and is involved in the resistance mechanism against tetracycline (and derivatives). It tightly controls gene expression of tetA, which encodes an efflux pump responsible for removing tetracycline from the cell. TetR binds selectively to two palindromic recognition sequences (tetO>1,2) with high affinity. For DNA binding to occur TetR adopts a homodimeric structure and binds with two α-helix-turn-α-helix motifs (HTH) to two tandemly oriented tetO sequences. In the presence of tetracycline, TetR undergoes a conformational change, which prevents it from binding to DNA, thereby allowing gene expression (Orth et al. 2000; Kisker et al. 1995).
Due to its robust and highly regulatable DNA-binding properties, TetR has become a widely adopted tool in synthetic biology. Its ease of modification and ability to function in both prokaryotic and eukaryotic systems have made it an essential element in the development of gene regulation systems (Berens & Hillen, 2004).
Because of its well-characterized behavior, TetR was integrated into our design of a modular DNA-stapling system.

3. Assembly and Part Evolution

TetR was C-terminally fused to create a tetR-mScarlet-I-His6.

As part of developing a Förster Resonance Energy Transfer (FRET) assay, a modified version of TetR was created. Based on previous studies that successfully engineered single-chain TetR (scTetR) proteins with unaltered DNA binding, we genetically fused two TetR proteins together with a flexible (G4S)6 linker (Krueger et al. 2003; Zhou et al. 2007). Unfortunately, under the T7 promoter system we tested, the expression levels were insufficient for further experimental use. (More information can be found on our Wiki or the tetR-mScarlet-I composite part)

4. Results

4.1 Protein Expression and Mobility Shift Assay

The fusion protein was expressed from a T7 based expression plasmid and subsequently purified using metal affinity chromatography with Ni-NTA beads (Fig. 1, left). DNA binding affinity in two different buffer systems was estimated with an electrophoretic mobility shift assay (EMSA) (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl).

Figure 2: Expression and DNA Binding Analysis of tetR-mScarlet-I-His6 Fusion Protein.
Left image: SDS-PAGE analysis of protein expression. Lane 1: raw lysate of E. coli expression culture after sterile filtration; Lane 2: Flow through of first wash; Lane 3: Flow through of second wash; Lane 4: Elution of purified protein. The expected band size of the protein is 50 737.60 Da, highlighted with a red box on the gel.
Right image: Qualitative electrophoretic mobility shift assay of TetR in two different buffer systems. 1 µM protein and 0.5 µM DNA containing three TetR binding sites were equilibrated in different buffer systems (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl). Bands were visualized by SYBR-safe staining after gel electrophoresis

4.2 In Silico Characterization using DaVinci

We developed the in silico model DaVinci for rapid engineering and development of our PICasSO system. DaVinci acts as a digital twin to PICasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA. We calibrated DaVinci with literature and our own experimental affinity data calculated from EMSA assays with purified proteins DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged DNA dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the DNA-binding interaction.
The structures shown in Figure 4 were predicted using the AlphaFold server and the protein-DNA interaction further analyzed with all atom dynamics simulations. The depicted structures show favorable DNA binding, and no apparent problems with the fusion protein and DNA binding were detected.

Figure 4: Representations of the Simple Staple constructs Proteins are shown in full color (top row) and by their predicted structural accuracy during DNA interaction. The linkers were selected based on their structural property providing maximal flexibility. All structures were predicted using the AlphaFold server (Google DeepMind, 2024).

5. References

(Kisker et al., 1995; Krueger et al., 2003; Orth et al., 2000; Zhou et al., 2007)

Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg2+ Reveals Mechanism of Antibiotic Resistance. Journal of Molecular Biology, 247(2), 260–280. https://doi.org/10.1006/jmbi.1994.0138

Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. Nucleic Acids Research, 31(12), 3050–3056.

Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural Biology, 7(3), 215–219. https://doi.org/10.1038/73324

Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). Improved single-chain transactivators of the Tet-On gene expression system. BMC Biotechnology, 7, 6. https://doi.org/10.1186/1472-6750-7-6

[edit]
Categories
Parameters
None