Template:HelpPage/AssemblyStandardOverview
Contents
What are assembly standards
An assembly standard defines how part samples will be assembled together by the engineer. An assembly standard, like the BioBrick RFC[10], ensures compatibility between parts, allowing part samples to be assembled together creating new longer and more complex parts, while still maintaining the structural elements of the assembly standard. This idempotent assembly means that any newly composed part will adhere to its assembly standard without need for manipulation, and can be used in future assemblies without issue.
How does an assembly standard work
An assembly standard defines assembly through the use of a prefix and suffix (found on plasmid backbones), which flank the beginning and end of a part sample, respectively. The prefix and suffix contain restriction sites, which when used with specific restriction enzymes (cutting) and DNA ligase (connecting), allow part samples to be assembled together forming a new part. This new part sample will maintain the same prefix and suffix as its "parents" and contain a scar, where the cut and re-ligated restriction sites were stitched together. Note: There are also scarless assembly methods, which allow for the assembly of parts without the traditional use of the prefix and suffix restriction sites.
A part is compatible with an assembly standard as long as it meets the requirements defined by said standard. This means that the part will not have any restriction sites that also appear in the prefix and suffix. If there are "illegal" restriction sites in a part this would interfere in its assembly.
Assembly standards in relation too...
- Part - A part is compatible with an assembly standard, as long as its sequence meets the requirements of said standard; this means that the part does not have any restriction sites that would interfere with the assembly. It is important to remember that a part does not include the prefix and suffix as defined by the assembly standard.
- Assembly Method is combining two part samples together in series to form a new composite part. Traditional assembly is done through the use of restriction sites (cutting and ligating) as defined by the assembly standard. Assembly methods are facilitated through assembly standards.
- Plasmid Backbones - A plasmid backbone propagates a sample of a part, located inbetween the prefix and suffix of the plasmid backbone. Therefore the plasmid backbone will define the assembly standard for the part it maintains.
Example
- You'll notice that many parts on the Registry are BioBrick RFC[10] compatible: BBa_R0051 is a part that is compatible with all five Registry supported assembly standards.
- If you were to find a physical location for this part (using the Get This Part page) you'll see that all available samples are in the pSB1A2 plasmid backbone.
- The pSB1A2 plasmid backbone has a prefix and suffix as defined by the BioBrick RFC[10] assembly standard. The available samples of BBa_R0051 are flanked by this prefix and suffix.
- In order to assemble an available sample of BBa_R0051 to a different part you will need to make sure that a sample of that additional part is on a plasmid backbone that also belongs to the BioBrick RFC[10] assembly standard.