Composite

Part:BBa_K3114026

Designed by: Christian Emond, Michael Wahba, Michaella Atienza, Andrew Symes   Group: iGEM19_Calgary   (2019-10-08)


Magnesium Dechelatase Stay Green (SGR) inducible circuit


Usage and Biology

The conversion of chlorophyll a to pheophytin a is the first step in the natural chlorophyll degradation pathway. The enzyme Magnesium Dechelatase, encoded by the SGR gene, catalyzes this reaction by extracting magnesium (Mg2+) from chlorophyll, along with cofactors 2H+ (Shimoda et al. 2016).

BBa_K3114026 is a part consisting of multiple components of iGEM Calgary's 2019 Biobrick submission kit as well as other widely used Biobricks. The coding region consists of the SGR gene which encodes for the enzyme Magnesium Decheletase(BBa_K3114010).A T7 promoter(BBa_I719005)was used in conjunction with a strong ribosome binding site(BBa_B0030).Following the coding region is iGEM Calgary's universal spacer sequence and 6XHis tag site(BBa_K3114014).The universal spacer was utilized in an attempt to mitigate any adverse effects that the his tag may have on the protein's function, as hypothesized in Meguro et al. 2011.

This part can be used for IPTG-inducible expression and secretion of the protein Chlorophyll B Reductase. This circuit contains the DsbA signal peptide. The DsbA signal peptide is a 19-amino acid sequence which targets fused proteins to the Sec secretion pathway in E. coli (Schierle et al., 2003). The fused protein is not folded until it is secreted to the periplasm. The signal peptide is cleaved after residue 19 by signal peptidase after secretion (recognition sequence: Ala-X-Ala).



Sequences and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 2131
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1554
  • 1000
    COMPATIBLE WITH RFC[1000]


References

Meguro, M., Ito, H., Takabayashi, A., Tanaka, R., & Tanaka, A. (2011). Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. The Plant Cell, 23(9), 3442-3453.

Schierle, C. F., Berkmen, M., Huber, D., Kumamoto, C., Boyd, D., & Beckwith, J. (2003). The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. Journal of Bacteriology, 185(19), 5706–5713. https://doi.org/10.1128/JB.185.19.5706-5713.2003

Shimoda, Y., Ito, H., & Tanaka, A. (2016). Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. The Plant Cell, 28(9), 2147-2160.


[edit]
Categories
Parameters
None