Composite

Part:BBa_K2259047

Designed by: Laurynas Karpus   Group: iGEM17_Vilnius-Lithuania   (2017-10-02)


Cl 434 (SynORI framework)

Intermediate part of both part:BBa_K2259042 and part:BBa_K2259043. It has no upstream RNA Trigger 1 part:BBa_K2259084 or RNA Trigger 2 part:BBa_K2259084 coupled with modified cI lambda promoter part:BBa_I12006.

The part is composed of the modified cI lambda promoter part:BBa_I12006 repressor - cI 434 part:BBa_C0052 which is under the Anderson promoter part:BBa_J23104 followed by a strong RBS part:BBa_B0034, and a double terminator at the end.

This part is used together with part:BBa_K2259042, part:BBa_K2259043 and part:BBa_K2259044 to build a 5 plasmid SynORI selection gene circuit.

cI 434 minimizes the expression of genes under the cI lambda promoter part:BBa_I12006 when the activator - cI lambda part:BBa_K2259044 is absent.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 7
    Illegal NheI site found at 30
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 749
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]



Introduction

The overview of 5 plasmid system

Figure 1. The schematic representation of 5 plasmid SynORI selection system. First plasmid constantly expresses lambda, the activator of the modified phage promoter, which controls the expression of the Trigger 1 and 2. The Triggers unlock the translation of split resistance gene controlled by Toehold 1 and 2. Additionally, 434 repressor is constantly expressed to regulate the modified phage promoter. If any of the plasmid is lost, the cell dies.

Results

Figure 1. SynORI 5 plasmid co-transformation results. 1 - No trigger 1 (control). 2 - No trigger 2 (control). 3 - No lambda activator plasmid (control). 4 - Full System: lambda activator plasmid; toehold 1 alpha-neo; toehold 2 beta-neo; trigger 1; trigger 2

About SynORI

Sel.png

SynORI is a framework for multi-plasmid systems created by Vilnius-Lithuania 2017 which enables quick and easy workflow with multiple plasmids, while also allowing to freely pick and modulate copy number for every unique plasmid group! Read more about [http://2017.igem.org/Team:Vilnius-Lithuania SynORI here]!

Toehold riboregulators in SynORI

Toehold switches together with their corresponding RNA triggers and split antibiotic genes completes the dynamic SynORI selection system. The switches lock the translation of downstream split antibiotic genes and form an AND type gate genetic circuit which functions to stably maintain multiple plasmids in the SynORI collection.

SynORI selection gene circuits for multi-plasmid systems:

• 2 plasmids

Consisting of: Two split antibiotic genes (part:BBa_K2259018 and part:BBa_K2259019)

• 3 plasmids

Consisting of: One Toehold (part:BBa_K2259014 or part:BBa_K2259015), one Trigger RNA (part:BBa_K2259016 or part:BBa_K2259017) and split neomycin antibiotic resistance genes (part:BBa_K2259018 and part:BBa_K2259019).

• 4 plasmids

Consisting of: Two Toeholds (part:BBa_K2259014 and part:BBa_K2259015), two Trigger RNAs (part:BBa_K2259016 and part:BBa_K2259017) and split neomycin antibiotic resistance genes (part:BBa_K2259018 and part:BBa_K2259019).

• 5 plasmids

Consisting of: Modified phage control system part:BBa_K2259044, two Toeholds (part:BBa_K2259014 and part:BBa_K2259015), two repressed Trigger RNAs (part:BBa_K2259042 and part:BBa_K2259043) and split neomycin antibiotic resistance genes (part:BBa_K2259018 and part:BBa_K2259019).

Two groups of Toeholds

SynORI collection introduces two Toehold sequences termed Toehold 1 and Toehold 2 which only interact with its corresponding Trigger RNA, termed Trigger 1 and Trigger 2 and display no cross interaction.

References

Toehold Switches: De-Novo-Designed Regulators of Gene Expression

Green, Alexander A. et al. Cell, Volume 159, Issue 4, 925 - 939

[edit]
Categories
//awards/part_collection/2017
//collections/synori
Parameters
None