Part:BBa_K3711065
Panb1-α factor-PepACS-AOX1 Terminator
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 124
Illegal XhoI site found at 649 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Description
This is a composite part for extracellular expression of a peptide consists of three short peptides: PepA, PepC, SPB with flexible GS-linkers. Panb1 is a constitutive promoter in yeast, which is expressed under anaerobic conditions, while under aerobic conditions, Panb1, as a repression target of ROX1, is inhibited. When Panb1 initiates the expression, the signal peptide, α-factor, is used to express PepACS outside of the cell.
Usage and Biology
PepACS consists of several short peptides(PepA, PepC, SPB) with flexible GS-linkers. All these short peptides are coded by genes of keratin from human hair and related protein, which enables PepACS to interact with keratin.
AAs seq of PepA: CCQSSCCKPSC
AAs seq of PepC: PIYCPPTCYH
AAs seq of SPB: LCRALIKRI
PepA is hydrophobic (less than 10%). Polarity interactions, for example, could be formed due to reactional groups in its sequence, which enhance its specificity and oriental binding ability. Peptides rich in cysteine may form covalent bonds with keratin in the hair, while some of it could recombine or even break the disulfide bonds of keratin. Cysteine could binds to sulfydryl, which could apparently reduce the disulfide bonds in keratin. When electron receptors, e.g. oxygen dissolved in solution, are available, cysteine residue could form disulfide bonds with them, which are oxidized from the butyl of cysteine.
The break down and reform of disulfide bonds is tightly related to the shape of the hair. Instead of alkaline and Sulphur containing relaxers, this peptide thought could be one brand new method of environmentally friendly control of hair shape.
Molecular cloning
None |