Reporter

Part:BBa_K339011

Designed by: Christopher Tang   Group: iGEM10_Calgary   (2010-10-25)

ibpAB-fsxA Promoter with GFP Reporter

ibpAB-fsxA Fusion Promoter with a GFP Reporter

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 940


Functional Parameters

Characterization of the ibpAB-fsxA fusion promoter's response to properly folding and misfolding proteins

Purpose/ Protocol

The purpose of this assay is to characterize the ibpAB fusion promoter (ibpAB-FxSA) with a protein that is known to fold correctly (MalEΔSS) and with a protein that are known to misfold (MalE31ΔSS) while remaining in the cytoplasm. The promoter was coupled with green fluorescent protein so when activated, the reporter would be produced. A construct received from Jean-Michel Betton's lab containing MalEΔSS and MalE31ΔSS downstream from a maltose-induced promoter were transformed into Top10 competent cells containing the plasmid with the ibpAB-fsxA GFP reporter plasmid (ibpAB-I13504). Overnight cultures were made from these transformations in 5 mL of LB Lennox Broth and left to grow for sixteen hours. Induction was done with multiple concentrations of maltose to produce different quantities of protein and the cells were shaken at 30°C. Four hours after induction, GFP fluorescence was measured and can be seen below.

Results

"http://i872.photobucket.com/albums/ab287/iGEMCalgary_2010/ibpAB-data.png"

This graph shows the GFP fluorescence produced when MalEΔSS and MalE31ΔSS downstream of maltose-inducible promoters were transformed into Top10 competent cells containing the ibpAB-fsxA promoter coupled with a GFP reporter.


Discussion and Conclusions

The graph trend lines show a sharp decrease from the opening GFP output before rising again to level off. The induction using varying concentrations of maltose to produce known misfolding protein shows that the properly folding maltose binding protein (MalEΔSS) causes more fluorescence output than the misfolding maltose binding protein (MalE31ΔSS). This is in contradiction with the literature data. However, the last data value at maltose concentration of 0.5% maltose added to the solution is what creates this. In the future, more characterization assays should be run with inductions using more variants of maltose concentrations. These would allow for further verification and confirmation of either literature data or our data. There have been very few studies using this fusion promoter so little is known about it. In addition, more known folding and misfolding proteins can be used to enhance the data gained with maltose binding protein.

[edit]
Categories
Parameters
None