RNA

Part:BBa_K3385016

Designed by: Daniel Bavnhøj   Group: iGEM20_DTU-Denmark   (2020-10-13)


crRNA_spaA_KO_up

Theoretical expectation: It has been suggested that spaA encodes a molecule which is involved in polarity maintenance and thereby polar growth. The mutant was expected to have a dense hyperbranched morphology.

This crRNA is for upstream targeting of the Polarisome component gene (spaA) in A. niger. It was used in combination with BBa_K3385017, but can be used in combination with any crRNA targeting downstream this target site.

Functionality: The sgRNA efficiency has been accessed through the technique to assess protospacer efficiency (TAPE) [2]. A repair oligo is used to mediate homologous recombination, where a highly efficient sgRNA will show no colonies without the repair oligo, while less efficient sgRNA will show a reduced number of colonies.

Results: Below is a picture showing A. niger transformed with CRISPR_spaA_KO and the repair oligo for spaA. It shows efficient gene deletion when it's transformed with a repair oligo.

TAPE showing sgRNA efficiency.

To see if the K/O’s were successful, other than looking at macromorphology, tissue PCRs were performed. By the amplification of specific primers, upstream and downstream of the gene, it can be verified if the gene has successfully been knocked out. If it has been knocked out the primers are gonna be closer to each other resulting in a smaller band in the Tissue PCR. However, if the gene is still present in the genome, the band size will be the same as the target gene as seen in the table below.

Expected length of each K/O
Targeted gene Expected gene length after K/O Control lenght
ΔspaA 672 bp 3528 bp
Δgul-1 545 bp 5022 bp
ΔpkaR 370 bp 1661 bp
Picture of the tissue PCRs performed on ΔspaA, Δgul-1 and ΔpkaR.
As seen from the results above, this part can be sucssesfully used to knock out spaA in A. niger.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References:
[1] Efficient Oligo nucleotide mediated CRISPR-Cas9 Gene Editing in Aspergilli. Nodvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, Mortensen UH. Fungal Genet Biol. 2018 Jan 8. pii: S1087-1845(18)30004-5. doi: 10.1016/j.fgb.2018.01.004. 10.1016/j.fgb.2018.01.004 PubMed 29325827

[2] Efficient Oligo nucleotide mediated CRISPR-Cas9 Gene Editing in Aspergilli. Nodvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, Mortensen UH. Fungal Genet Biol. 2018 Jan 8. pii: S1087-1845(18)30004-5. doi: 10.1016/j.fgb.2018.01.004. 10.1016/j.fgb.2018.01.004 PubMed 29325827

[edit]
Categories
Parameters
None