Regulatory
luxR

Part:BBa_R0061

Designed by: Srini Devadas, David Gray, Ronny Krashinsky, Debra Lin, and Chris Zheng Liu   Group: Antiquity   (2004-01-28)

Promoter (HSL-mediated luxR repressor)

This part involves the -10 binding site, the -35 binding site, and the twenty nucleotides between that constitute the lux box. With this part, LuxR functions as a acyl-homoserine lactone-dependent repressor. LuxR resonds to the HSL produced by LuxI, N-(3-oxohexanoyl)-HSL. The Lux box is positioned such that it partially overlaps the consensus -35 and -10 hexamers of an RNA polymerase binding site.


Usage and Biology

A quorum-sensing system involving LuxR, the transcriptional activator, and an acyl-homserine lactone signal regulate the lux operon in vibrio fischeri. In vibrio fischeri, the lux box, which is a 20-base inverted repeat unit, is positioned 42.5 bases upstream of the transcriptional start of the lux operon and is required for transcriptional activation. Egland and Greenberg constructed an artificial lacZ promoter with the lux box positioned between and overlapping the -35 and -10 hexamers of the RNA polymerase binding site was constructed, and LuxR functioned as an acyl-homoserine lactone-dependent repressor at this promoter. It was found that full-length LuxR by itself can bind to lux box-containing DNA. (see reference below)


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Contribution

Group: Valencia_UPV iGEM 2018
Author: Adrián Requena Gutiérrez, Carolina Ropero, Carlos Andreu Vilarroig
Summary: We adapted the part to be able to assemble transcriptional units with the Golden Gate assembly method
Documentation: In order to create our complete part collection of parts compatible with the Golden Gate assembly method, we made the part BBa_K2656002 which is this part adapted to the Golden Gate technology.

In order characterize this promoter we constructed the composite part BBa_K2656116 using the following RBS, CDS and terminator:

By using this experimental protocol and inducing at different AHL concentrations, we have obtained the following experimental measures (in blue dots). These measurements were compared with our constitutive AHL-LuxR model to test it.

AHL experiment.
Figure 3. AHL induction experiment and comparison with our model simulation.
[edit]
Categories
//awards/basic_part
//chassis/prokaryote/ecoli
//classic/regulatory/uncategorized
//direction/forward
//promoter
//regulation/negative
//rnap/prokaryote/ecoli/sigma70
Parameters
biology
directionForward
negative_regulators1
positive_regulators