Part:BBa_K726012
T7Prom+HisTag+YefM
This part contains YefM the antitoxin of the yefM-yoeB toxin-antitoxin system. It is behind a T7 Promoter with a , lac operator, ribosome binding site, and 6x his tag. The construct can be moved to any plasmid for expression.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 123
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
This graph shows YoeB, the toxin, being grown in filtered supernatant from control, toxin, and antitoxin cells. It is observed that the YoeB toxin does not grow as well as any of the strains in the above graphs. However, there is a slight rescue of growth only in the case when it is exposed to the antitoxin supernatant (pink line).
Within the E.coli genome, there is the naturally occurring toxin-antitoxin system whose production is altered in response to various types of stress. In layman’s terms, a toxin-antitoxin system consists of two genes: one coding for the toxin, or “poison”, and one coding for the antitoxin, or “antidote”.
There are three different types of toxin/antitoxin systems, all with different products effectively committing apoptosis. A general overview of all types are listed below.
In a Type 2 system (diagrammed above), the antitoxin gene is usually upstream of the toxin gene and its product is usually the more unstable of the two, degrading much more rapidly than the toxin. As this is the case, antitoxin proteins are produced in a much larger quantity in order to counteract the toxin. Antitoxin and toxin pairs are coded into proteins and bind to each other to prevent an accumulation of toxin. In stressful situations – when there is DNA damage, drastic change in temperature, or lack of nutrients – stress-induced proteases cleave antitoxins and leave the toxins to cleave the mRNA strands.
The 2012 UCSF iGEM Team used this part to determine if toxins and antitoxins could be used as a form of communication between two different strains of E. coli to tune population ratios.
This first graph shows control cells that were grown in filtered supernatant from either Toxin, Antitoxin, or control cell growth. The inoculated control cells grow well in the supernatant from control and antitoxin cells but do not grow well in the presence of toxin supernatant. This indicates that the toxin supernatant actually contained toxins that had a growth effect on the control cells.
This graph shows YefM, the antitoxin, being grown in filtered supernatant from control, toxin, and antitoxin cells. It is observed that the antitoxin grows well in each condition, except when inoculated into the supernatant where toxin cells had previously grown (green line).
None |