Part:BBa_K4275006
TrEGIII-t
T. reesei Endoglucanase III fused with type I dockerin can interact with type I cohesin and bind onto CipA scaffoldin of a cellulosome to achieve high-efficiency synergetic dehydrolysation of cellulose with exoglucanases and beta-glugosidases. EG randomly hydrolyzes internal amorphous regions of cellulose fibers, releasing oligosaccharides of various degrees of polymerization (DP) and consequently generating new chain ends, one reducing and one nonreducing[1].
Figure 1 The 3D structure of the protein predicted by Alphafold2.
Usage and Biology
TrEGIII from Glycoside hydrolases (GH)7 family cleave O-glycosidic bonds GH-catalyzed hydrolysis proceeds via a general acid mechanism involving a cyclic oxocarbenium-like transition state with protonation of the glycosidic oxygen[1]. They utilise retaining mechanisms (carboxylate substitutes glycosidic bond, then neutralised by carboxylic acid, then water attacks the ester intermediate) and randomly cleave glycosidic linkages in disordered regions of cellulose as they have relatively open active site clefts[1].
Characterization
Cellulases and cellulase boosters expression
The enzymatic digestion of the polysaccharide chains of cellulose was completed by exoglucanase, endoglucanase and 1-4 betaglucosidase, and this series of reactions are catalysed by LPMO and CDH. We constructed expression vectors for yeast Kluyveromyces marxianus with the unique origin of replication and antibiotic selection marker for the culturing of Kluyveromyces marxianus. Expression vectors were made distinct by the insertion of different sequences coding for the ligated form of the cellulase enzymes, LPMO and CDH. The enzymes were ligated with an alpha-mating factor secretion signal for Kluyveromyces marxianus at the N-terminus and a type I dockerin domain at the C-terminus (Fig.2A).The successful production and secretion of the protein NpaBGS, MtCDH and TrEGIII are examined by SDS-PAGE and western blot analysis (Fig.2D).
Cellulosome construction
We assembled the cellulose-like complex on the surface of E.coli by adding primary scaffold proteins, cellulases and cellulase boosters onto E.coli expressing secondary scaffold proteins. The mixture was centrifuged and resuspended in tris-HCl. The mixture underwent centrifugation and resuspension using tris-HCl, and cellulose was added to the mixture. After 24h, the mixture was filtered and tested for glucose by Benedict's test. From the result, we determined that the cellulosome-like complexes are able to degrade cellulose at a higher efficiency than cell-free cellulases mixture (Fig.3A and 3B). The overall success in engineering our project was verified by the successful construction of cellulosome complex and degrading cellulose to reducing sugars.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 322
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 194
References
1. Chang, Jui-Jen et al. "PGASO: A Synthetic Biology Tool For Engineering A Cellulolytic Yeast". Biotechnology For Biofuels, vol 5, no. 1, 2012. Springer Science And Business Media LLC, https://doi.org/10.1186/1754-6834-5-53.
None |