Part:BBa_K3416005
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase/Pfs
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (EC 3.2.2.9) (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH) and plays a key role in four metabolic processes: biological methylation, polyamine biosynthesis, methionine recycling and bacterial quorum sensing.
H2O + S-adenosyl-L-homocysteine → adenine + S-(5-deoxy-D-ribose-5-yl)-L-homocysteine
Introduction
Vilnius-Lithuania iGEM 2020 project FlavoFlowincludes three goals towards looking for Flavobacterium disease-related problems’ solutions. The project includes creating a rapid detection kit, based on HDA and LFA, developing an implement for treating a disease, and introducing the foundation of edible vaccines. This part was used for the second goal- treatment - of the project FlavoFlow.
Biology
Description of the Pfs
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (EC 3.2.2.9) cleaves the glycosidic bond of 5’-methylthioadenosine (MTA) and S-adenosylhomocysteine (AdoHcy) to adenine and its corresponding thiol ribose. This hydrolysis reaction is irreversible, with Km=0.43μM and 4.3μM for MTA and AdoHcy, respectively[1]. MTA and AdoHcy are catabolized differently in mammals and microbes[2].
The MTA/AdoHcy nucleosidase active has three separate regions, the purine, ribose, and 5'-alkylthio binding subsites. The three region active site was determined by the presence of adenine and the inhibitors: 5'-methylthio tubercidin (MTT), formycin A (FMA), 5'-methylthio-immucillin A (MT-ImmA), and 5'-methylthio-4'- deoxy-1'-aza-2'-deoxy-1'-(9-methylene)-immucillin A (MTDADMe-ImmA). The structure of MTA/AdoHcy nucleosidase suggests that enzyme is functional as a dimer, with each monomer consisting of a nine-stranded mixed β sheet flanked by six α helices and a small 310 helix. The nucleosidase has no similarity to any known protein[1].
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 223
- 1000COMPATIBLE WITH RFC[1000]
References
- ↑ 1.0 1.1 Lee, J. E., Cornell, K. A., Riscoe, M. K. & Howell, P. L. Structure of E. coli 5'-methylthioadenosine/S-adenosylhomocysteine Nucleosidase Reveals Similarity to the Purine Nucleoside Phosphorylases. Structure 9, 941–953 (2001).
- ↑ Lee, J. E. et al. Mutational Analysis of a Nucleosidase Involved in Quorum-Sensing Autoinducer-2 Biosynthesis. Biochemistry 44, 11049–11057 (2005).
None |