Composite

Part:BBa_K2549020

Designed by: Rongrong Du   Group: iGEM18_Fudan   (2018-10-09)


LaG16-2-mN1c-GV2

This part is one of our SynNotch receptors, similar to the original one[1]. LaG16-2 (Part:BBa_K2446058) is used as the extracellular sensor module to receive the signal input from GFP. mN1c (Part:BBa_K2549006) is served as the transmembrane core domain of SynNotch, which is evident to have a low basal expression and a high activation efficiency. GV2 (GAL4-VP64) is a transactivator comprising of a GAL4 DNA binding domain (Part:BBa_K801032) and a tetrameric VP16 transcription activator domain (Part:BBa_K1982012), which is cleaved after SynNotch activation and drives the expression of the amplifier.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 381
    Illegal XhoI site found at 2096
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 2015
    Illegal SapI.rc site found at 1495


Biology

Our characterization
Flow cytometry results of SynNotch activation. surAg, surface antigens, which was surface-expressed CD19 for αCD19-SynNotch or surface-expressed EGFP for LaG-SynNotch, respectively. Without surAg (+Mock), the EGFP (Y axis, driven by GV2 released after SynNotch activation) was low, and it went high only after adding surEGFP but not surCD19.

LaG16-2-mN1c-GV2 (Part:BBa_K2549020) and αCD19-mN1c-tTAA (Part:BBa_K2549021) perform well together, which were used as our common Receptors for ENABLE 16 logic gates.


SynNotch receptors function well in Morsut L et al 2016
Morsut L et al stated:SynNotch receptors provide extraordinary flexibility in engineering cells with customized sensing/response behaviors to user-specified extracellular cues.
Morsut L et al have shown that modularity of the synNotch platform. They stated: the input and output domains from Notch can be swapped with diverse domains. On the extracellular side, diverse recognition domains can be used (antibody based, or peptide tags are shown) and on the intracellular side, diverse effector can be used (transcriptional activators with different DNA-binding domains are shown, as well as a transcriptional repressor).

Please refer to the original article for more details.


References

  1. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Morsut L, Roybal KT, Xiong X, ..., Thomson M, Lim WA. Cell, 2016 Feb;164(4):780-91 PMID: 26830878; DOI: 10.1016/j.cell.2016.01.012
[edit]
Categories
//cds/membrane
//cds/receptor
Parameters
None