Part:BBa_K1781006
LZ-T18 - Leucine Zipper bound to T18 fragment of BACTH
Leucine zippers are one of the most common protein-binding motifs. The gene codes for an alpha helix that contains a high amount of leucine residues. This alpha helix can interact with another leucine zipper and dimerize. This interaction has been thoroughly characterized and confirmed as a good control. The leucine zipper here is bound to the T18 subunit of the BACTH system and can be used as a control for the T18 and T25 interactions.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 4
Illegal AgeI site found at 130 - 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 49
Results - Conversion of BACTH into an iGEM standard and analysis of function
The inserts T25, T18, LZT18 and LZT25 all fit the iGEM Biobrick standard which meant that they had fixed prefix restriction sites and suffix restriction sites. The vectors they came in had kanamycin resistance.
Fusion ligation of T18, LZT18 and T25, LZT25
The plasmids containing T18, LZT18 and T25, LZT25 were restriction digested and gel electrophoresis was performed to purify them (figure 1).
After this gel run, the necessary bands were eluted out and the inserts were ligated with their respective vectors. An electroporation was done to transform E. coli GBO5 with these plasmids and were streaked onto kanamycin resistant plates that gave colonies meaning successful transformation (figure 2).
Ligation of fusion products: T18-LZT18 and T25-LZT25
Selected colonies from the above plates were cultured to extract plasmids. These plasmids were then restriction digested and a gel electrophoresis was carried out to purify them (figure 3).
After this gel run, the necessary bands were eluted out and the insert was ligated with the vector. An electroporation was done to transform E.coli GBO5 with these plasmids and were streaked onto kanamycin resistant plates that gave colonies meaning successful transformation (figure 4).
Ligation with lacZ
Selected colonies from the above plates were cultured to extract plasmids. These plasmids were then restriction digested and a gel electrophoresis was carried out to purify them (figure 5).
After this gel run, the necessary bands were eluted out and the insert was ligated with the vector. An electroporation was done to transform E.coli BTH101 with this plasmid and was streaked onto X-Gal plates. The plate showed several white colonies along with blue colonies which meant that the transformation was not good. This step should be repeated to achieve the hypothesised result (figure 6).
The vector map of the final product is given below (figure 7).
None |