Part:BBa_K174008
SmtA metallothionein protein with CotC and Gfp fusion
This part is designed to allow heavy metals to be incorporated into Bacillus subtilis spores.
SmtA metallothionein protein from E. coli can bind to heavy metals [1,2,3]. Metallothioneins have a tendency to bind to cationic metal ions such as cadmium, copper, arsenic, mercury, silver.
By translationally fusing CotC spore coat protein from Bacillus subtilis, SmtA can be localized to the spore coat, hence trapping heavy metals into bacterial spores. SmtA is also fused with Gfp to facilitate the visualisation of spores using a fluorescent microscope.
We designed this device to sequester cadmium into B. subtilis spores. The device is expressed using a sigK type promoter which becomes active under sporulation conditions. Hence metals are soaked up when the cells are undergoing sporulation.
For more information, go to Newcastle iGEM 2009 [http://2009.igem.org/Team:Newcastle/Metals Metal Sequester] and [http://2009.igem.org/Team:Newcastle/Project/Overview Overview] pages.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 1234
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 1046
References
- Cretì, P., F. Trinchella, et al. "Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems." Environmental Monitoring and Assessment.
- Morby, A. P., J. S. Turner, et al. (1993). SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. 21: 921-925.
- Waldron, K. J. and N. J. Robinson (2009). "How do bacterial cells ensure that metalloproteins get the correct metal?" Nat Rev Micro 7(1): 25-35.
None |