Coding

Part:BBa_K1431101

Designed by: Rifei Chen, Yushan Zhang   Group: iGEM14_SUSTC-Shenzhen   (2014-10-09)

TetOn-3G, an ideal controller of mammalian gene expression with TRE-3G promoter+PolyA

Tet-On(Tetracycline-Controlled Transcriptional Activation[http://en.wikipedia.org/wiki/Tetracycline-controlled_transcriptional_activation],also known as rtTA2S-M2) is a system of inducible gene expression systems for mammalian cells. Tet-On 3G (also known as rtTA-V16) is similar to Tet-On but was derived from rtTA2S-S2 rather than rtTA2S-M2. The Tet-On 3G protein has 5 amino acid differences compared to Tet-On which appear to increase its sensitivity to doxycycline(Dox) even further. Tet-On 3G is sensitive to 100-fold less Dox and is 7-fold more active than the original Tet-On.

Tet-On_compare_with_Tet-On_3G.jpg
Figure 1. Tet-On 3G demonstrates higher sensitivity to doxycycline than Tet-On Advanced. Tet-On 3G and Tet-On Advanced genes
were integrated at the same locus in a stable HLF33 cell line expressing luciferase from a TRE promoter.For each of these
two double-stable cell lines, induced luciferase expression was measured in response to a range of doxycycline (Dox)
concentrations. At 5–10 ng/ml Dox, induced expression was 100–150-fold higher for the Tet-On 3G cell line, and at 50 ng/ml,
expression was 4.6 fold higher (data kindly provided by Professor W. Hillen and Dr. C. Berens, University of Erlangen).

Target cells that express the Tet-On 3G transactivator protein and contain a gene of interest (GOI) under the control of a TRE3G promoter (PTRE3G,BBa_K1431301) will express high levels of GOI, but only when cultured in the presence of Dox, which is a synthetic tetracycline derivative. In the presence of Dox, Tet-On 3G binds specifically to PTRE3G and activates transcription of the downstream GOI. PTRE3G lacks binding sites for endogenous mammalian transcription factors, so it is virtually silent in the absence of induction.(Source: Clontech)

The data of our experience shows in BBa_K1431301.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Note that Tet-On Systems respond well only to doxycycline, and not to tetracycline (Gossen & Bujard, 1995). The half-life of Dox in cell culture medium is 24 hours. To maintain continuous inducible GOI expression in cell culture, the medium should be replenished with Dox every 48 hours.


[edit]
Categories
Parameters
None