Difference between revisions of "Part:BBa K1529797:Design"

(References)
 
Line 5: Line 5:
  
  
===Design Notes===
+
==Design Notes==
 
sequence confirmed
 
sequence confirmed
  
 +
==Materials and Methods==
 +
-Strain<br>
 +
All the samples were JM2.300 strain.
  
 +
===3OC12HSL-dependent CmR expression Protocol===
 +
<b>1.Construction</b><br>
 +
A. Ptet-LuxR-Plac-RFP(pSB6A1), Plux-CmR-RhlI(pSB3K3)<br>
 +
B. Ptet-LuxR-Plac-RFP(pSB6A1), PlacIq-CmR (pSB3K3) (Positive control)<br>
 +
[[Image:3OC12HSL-dependent_CmR_expression_Construction.png|thumb|center|400px|<b>Fig. 1.</b>Plasmids for the experiment of 3OC12HSL-dependent CmR expression.]]
  
 +
<b>2.Assay protocol</b><br>
 +
1.Prepare the overnight culture of cell A and B at 37°C.<br>
 +
2.Make a 1:100 dilution in 3 mL of fresh LB containing antibiotics and grow the cell at 37°C until the observed OD590 reaches 0.5 (→fresh culture)<br>
 +
3. Add 30 microL of suspension in the following medium.<br>
 +
   1) 3 mL of LB containing Amp and Kan + 30 microL C4HSL (final concentration is 500 microM)<br>
 +
   2) 3 mL of LB containing Amp and Kan + 30 microL DMSO<br>
 +
   3) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100microg / mL) + 30 microL C4HSL (final concentration is 500 microM)<br>
 +
   4) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100microg / mL) + 30 microL DMSO<br>
 +
4. Grow the samples of sender cells at 37°C for more than 10 hours. Measure optical density every hour. (If optical density is over 1.0, dilute the cell medium.)<br>
  
===Source===
+
 
 +
===3OC12HSL-dependent C4HSL production Protocol===
 +
<b>1.Construction</b><br>
 +
<em>Sender</em><br>
 +
A. Ptet-LuxR-Plac-RFP(pSB6A1), Plux-CmR-RhlI(pSB3K3)<br>
 +
B. Ptet-LuxR-Plac-RFP(pSB6A1), Plux-CmR(pSB3K3)...Negative control<br>
 +
<i>Reporter</i><br>
 +
C. Ptet-RhlR(pSB6A1), Plux-GFP(pSB3K3)<br>
 +
D. Ptet-RhlR(pSB6A1), PlacUV5-GFP(pSB3K3)...Positive control<br>
 +
E. Ptet-RhlR(pSB6A1), Promoter-less-GFP(pSB3K3)...Negative control<br>
 +
[[Image:3OC12HSL-dependent_C4HSL_production_Construction.png|thumb|center|600px|<b>Fig. 2.</b>Plasmids for the experiment of 3OC12HSL-dependent C4HSL production.]]
 +
 
 +
<b>2.Assay protocol</b><br>
 +
Prepare the supernatant of the sender cell<br>
 +
1. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C until the observed OD590 reaches 0.5.<br>
 +
3. Add 30 microL of the culture containing the cells in the following medium.<br>
 +
   a) Add 30 microL of 500 microM 3OC12HSL to 3 mL LB containing Amp and Kan<br>
 +
   b) Add 30 microL DMSO to 3 mL LB containing Amp and Kan<br>
 +
4 .Grow the samples of sender cell at 37°C for 8 hours.<br>
 +
5. Centrifuge sample at 9000x g, 4°C for 1minute. Filter sterilize supernatant. (Pore size is 0.22 microm. ) Use this supernatant in reporter assay.<br>
 +
<br>
 +
<em>Reporter Assay</em><br>
 +
1. Grow the colony of Reporter cell (described upper) in LB containing antibiotic (Amp and Kan) over night at 37°C.<br>
 +
2. Make a 1:100 dilution in 3 mL of fresh LB+ antibiotics and grow the cells at 37°C until you reach an 0.5 in OD590 (fresh culture).<br>
 +
3. Add 30 microL of the culture containing reporter cell in the following medium.<br>
 +
   1) 2.7 mL filtrate of Aa +300 microL LB<br>
 +
   2) 2.7 mL filtrate of Ab +300 microL LB<br>
 +
   3) 2.7 mL filtrate of Ba +300 microL LB<br>
 +
   4) 2.7 mL filtrate of Bb +300 microL LB<br>
 +
   5) 3 mL LB + 500 microM C4HSL 30 microM (final concentration is 5 microM)<br>
 +
   6) 3 mL LB + DMSO 30 microL<br>
 +
4. Grow the samples of Reporter cell in incubator at 37°C for 4 hours.<br>
 +
5. Start preparing the flow cytometer 1 h before the end of incubation.<br>
 +
6. After incubation, take the sample, and centrifuge at 9000x g, 1 min, 4°C.<br>
 +
7. Remove the supernatant by using P1000 pipette.<br>
 +
8. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3.)<br>
 +
9. Dispense all of each suspension into a disposable tube through a cell strainer.<br>
 +
10. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)<br>
 +
 
 +
 
 +
==Source==
  
 
Composite of BBa_K395162, BBa_B0034 and BBa_C0070.
 
Composite of BBa_K395162, BBa_B0034 and BBa_C0070.
Line 21: Line 79:
 
[https://parts.igem.org/Part:BBa_C0070 BBa_C0070] : RhlI From kit plate
 
[https://parts.igem.org/Part:BBa_C0070 BBa_C0070] : RhlI From kit plate
  
===References===
+
==References==
 
1.Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619<br>
 
1.Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619<br>
 
2.Jennifer M. Henke et al. (2004) Bacterial social engagements. TRENDS in Cell Biology 14: 11<br>
 
2.Jennifer M. Henke et al. (2004) Bacterial social engagements. TRENDS in Cell Biology 14: 11<br>
 
3.Gabriella Pessi et al. (2000) Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR in Pseudomonas aeruginosa Journal of Bacteriology 182(24): 6940–6949<br>
 
3.Gabriella Pessi et al. (2000) Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR in Pseudomonas aeruginosa Journal of Bacteriology 182(24): 6940–6949<br>
 
4.Kendall M. Gray et al. (1994) Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. Journal of Bacteriology 176(10): 3076–3080<br>
 
4.Kendall M. Gray et al. (1994) Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. Journal of Bacteriology 176(10): 3076–3080<br>

Latest revision as of 13:42, 23 October 2014

Plux-CmR-RhlI


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1429
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

sequence confirmed

Materials and Methods

-Strain
All the samples were JM2.300 strain.

3OC12HSL-dependent CmR expression Protocol

1.Construction
A. Ptet-LuxR-Plac-RFP(pSB6A1), Plux-CmR-RhlI(pSB3K3)
B. Ptet-LuxR-Plac-RFP(pSB6A1), PlacIq-CmR (pSB3K3) (Positive control)

Fig. 1.Plasmids for the experiment of 3OC12HSL-dependent CmR expression.

2.Assay protocol
1.Prepare the overnight culture of cell A and B at 37°C.
2.Make a 1:100 dilution in 3 mL of fresh LB containing antibiotics and grow the cell at 37°C until the observed OD590 reaches 0.5 (→fresh culture)
3. Add 30 microL of suspension in the following medium.
   1) 3 mL of LB containing Amp and Kan + 30 microL C4HSL (final concentration is 500 microM)
   2) 3 mL of LB containing Amp and Kan + 30 microL DMSO
   3) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100microg / mL) + 30 microL C4HSL (final concentration is 500 microM)
   4) 3 mL of LB containing Amp, Kan and Cm (final concentration is 100microg / mL) + 30 microL DMSO
4. Grow the samples of sender cells at 37°C for more than 10 hours. Measure optical density every hour. (If optical density is over 1.0, dilute the cell medium.)


3OC12HSL-dependent C4HSL production Protocol

1.Construction
Sender
A. Ptet-LuxR-Plac-RFP(pSB6A1), Plux-CmR-RhlI(pSB3K3)
B. Ptet-LuxR-Plac-RFP(pSB6A1), Plux-CmR(pSB3K3)...Negative control
Reporter
C. Ptet-RhlR(pSB6A1), Plux-GFP(pSB3K3)
D. Ptet-RhlR(pSB6A1), PlacUV5-GFP(pSB3K3)...Positive control
E. Ptet-RhlR(pSB6A1), Promoter-less-GFP(pSB3K3)...Negative control

Fig. 2.Plasmids for the experiment of 3OC12HSL-dependent C4HSL production.

2.Assay protocol
Prepare the supernatant of the sender cell
1. Grow the colony of sender cell in LB containing antibiotic O/N at 37°C.
2. Make a 1:100 dilution in 3 mL of fresh LB containing antibiotic and grow the cells at 37°C until the observed OD590 reaches 0.5.
3. Add 30 microL of the culture containing the cells in the following medium.
   a) Add 30 microL of 500 microM 3OC12HSL to 3 mL LB containing Amp and Kan
   b) Add 30 microL DMSO to 3 mL LB containing Amp and Kan
4 .Grow the samples of sender cell at 37°C for 8 hours.
5. Centrifuge sample at 9000x g, 4°C for 1minute. Filter sterilize supernatant. (Pore size is 0.22 microm. ) Use this supernatant in reporter assay.

Reporter Assay
1. Grow the colony of Reporter cell (described upper) in LB containing antibiotic (Amp and Kan) over night at 37°C.
2. Make a 1:100 dilution in 3 mL of fresh LB+ antibiotics and grow the cells at 37°C until you reach an 0.5 in OD590 (fresh culture).
3. Add 30 microL of the culture containing reporter cell in the following medium.
   1) 2.7 mL filtrate of Aa +300 microL LB
   2) 2.7 mL filtrate of Ab +300 microL LB
   3) 2.7 mL filtrate of Ba +300 microL LB
   4) 2.7 mL filtrate of Bb +300 microL LB
   5) 3 mL LB + 500 microM C4HSL 30 microM (final concentration is 5 microM)
   6) 3 mL LB + DMSO 30 microL
4. Grow the samples of Reporter cell in incubator at 37°C for 4 hours.
5. Start preparing the flow cytometer 1 h before the end of incubation.
6. After incubation, take the sample, and centrifuge at 9000x g, 1 min, 4°C.
7. Remove the supernatant by using P1000 pipette.
8. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3.)
9. Dispense all of each suspension into a disposable tube through a cell strainer.
10. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)


Source

Composite of BBa_K395162, BBa_B0034 and BBa_C0070.

BBa_K395162 : Lux-promoter_CmR From Tokyo_Tech 2010

BBa_B0034 : RBS From kit plate

BBa_C0070 : RhlI From kit plate

References

1.Bo Hu et al. (2010) An Environment-Sensitive Synthetic Microbial Ecosystem. PLoS ONE 5(5): e10619
2.Jennifer M. Henke et al. (2004) Bacterial social engagements. TRENDS in Cell Biology 14: 11
3.Gabriella Pessi et al. (2000) Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR in Pseudomonas aeruginosa Journal of Bacteriology 182(24): 6940–6949
4.Kendall M. Gray et al. (1994) Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. Journal of Bacteriology 176(10): 3076–3080