Part:BBa_K5237011
Cathepsin B Expression Cassette
Cathepsin B is a lysosomal protease present in the cytosol of various cancer types. To enhance its nuclear functionality, cathepsin B (BBa_K5237100) was fused to the SV40 nuclear localization sequence (BBa_K2549054) via a GGS linker, enabling nuclear import and precise subcellular targeting. We overexpressed this composite part in HEK293T cells to investigate its ability to cleave different Gal4-Linker-VP64 constructs (BBa_K5237020) using a fluorescence readout assay. We successfully demonstrated that the GFLG linker was efficiently cleaved by cathepsin B in vivo. Furthermore, we showed that wild-type cathepsin B matured into its active forms when overexpressed in HEK293T cells. Together, these findings enable the functionalization of our PICasSO system for a wide range of therapeutic and synthetic biology applications.
Contents
While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D
spatial organization of DNA is well-known to be an important layer of information encoding in
particular in eukaryotes, playing a crucial role in
gene regulation and hence
cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
genomic spatial
architecture are limited, hampering the exploration of
3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
powerful
molecular toolbox for rationally engineering genome 3D architectures in living cells, based on
various DNA-binding proteins.
The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.
At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding
proteins
include our
finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
"half staples" that can be combined by scientists to compose entirely
new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
successful stapling
and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the
functionality of our Cas and
Basic staples. These
consist of staples dependent on
cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
dynamic stapling in vivo.
We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
target cells, including mammalian cells,
with our new
interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom
readout
systems. These include components of our established FRET-based proximity assay system, enabling
users to
confirm
accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
hijacking events
in mammalian cells.
The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed
exceptional performance as described on our iGEM wiki and can serve as a reference. The other
parts in
the
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
their
own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
engineering.
Our part collection includes:
DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo | ||
BBa_K5237000 | Fusion Guide RNA Entry Vector MbCas12a-SpCas9 | Entry vector for simple fgRNA cloning via SapI |
BBa_K5237001 | Staple Subunit: dMbCas12a-Nucleoplasmin NLS | Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple |
BBa_K5237002 | Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS | Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple |
BBa_K5237003 | Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS | Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity |
BBa_K5237004 | Staple Subunit: Oct1-DBD | Staple subunit that can be combined to form a functional staple, for example with TetR. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237005 | Staple Subunit: TetR | Staple subunit that can be combined to form a functional staple, for example with Oct1. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237006 | Simple Staple: TetR-Oct1 | Functional staple that can be used to bring two DNA strands in close proximity |
BBa_K5237007 | Staple Subunit: GCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237008 | Staple Subunit: rGCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237009 | Mini Staple: bGCN4 | Assembled staple with minimal size that can be further engineered | Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications |
BBa_K5237010 | Cathepsin B-cleavable Linker: GFLG | Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples |
BBa_K5237011 | Cathepsin B Expression Cassette | Expression cassette for the overexpression of cathepsin B |
BBa_K5237012 | Caged NpuN Intein | A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237013 | Caged NpuC Intein | A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237014 | Fusion Guide RNA Processing Casette | Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming |
BBa_K5237015 | Intimin anti-EGFR Nanobody | Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs |
BBa_K4643003 | IncP Origin of Transfer | Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery | Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells |
BBa_K5237016 | FRET-Donor: mNeonGreen-Oct1 | FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237017 | FRET-Acceptor: TetR-mScarlet-I | Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237018 | Oct1 Binding Casette | DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay |
BBa_K5237019 | TetR Binding Cassette | DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay | BBa_K5237020 | Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 | Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker |
BBa_K5237021 | NLS-Gal4-VP64 | Trans-activating enhancer, that can be used to simulate enhancer hijacking | BBa_K5237022 | mCherry Expression Cassette: UAS, minimal Promoter, mCherry | Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker |
BBa_K5237023 | Oct1 - 5x UAS Binding Casette | Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay |
BBa_K5237024 | TRE-minimal Promoter- Firefly Luciferase | Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking |
1. Sequence Overview
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 656
Illegal BglII site found at 755 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 86
Illegal NgoMIV site found at 157
Illegal NgoMIV site found at 1009
Illegal AgeI site found at 841 - 1000COMPATIBLE WITH RFC[1000]
2. Usage and Biology
Cathepsin B is a cysteine protease typically found in lysosomes or secreted outside the cell, where it degrades
proteins of the extracellular matrix (Ruan et al., 2015). Its significance in cancer progression is
well-documented, with elevated levels observed in cancerous tissues compared to noncancerous tissues (Ruan et
al., 2015). Given its important role in tumor progression, cathepsin B is considered a potential therapeutic
target (Ruan et al., 2015) or prodrug-activating enzyme (Zhong et al., 2013). To explore the
therapeutic potential of our PICasSO platform, we designed protein-based DNA staples that respond to the
overexpression of cathepsin B in cancerous tissues. We were able to demonstrate doxorubicin-dependent cathepsin B
cleavage of one out of five documented linkers (Jin et al., 2022; Shim et al., 2022; Wang et
al., 2024) in HEK293T cells.
To enhance the functionality of cathepsin B within the nucleus, we fused it to the SV40 nuclear localization
sequence (NLS), a short peptide derived from the simian virus 40 (SV40) large T-antigen. The SV40 NLS
contains a cluster of basic amino acids, which are recognized by importins, allowing the tagged protein to be
transported through the nuclear pore complex into the nucleus (Yoneda, 1997). This tool is commonly used to ensure
the nuclear localization of recombinant proteins in eukaryotic cells (Lu et al., 2021). By directing
cathepsin B to the nucleus, we aim to enhance its precision in cellular targeting.
3. Assembly and Part Evolution
The protein sequence of human cathepsin B was obtained from UniProt (P07858), and an SV40 nuclear localization sequence (BBa_K2549054) was connected to the N-Terminus via a GGS linker. After in silico cloning, the corresponding nucleotide sequence was optimized for expression in human cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.) and purchased as a gBlock. Restriction cloning was used to insert the gBlock into the mammalian expression vector pcDNA3.1. The plasmids were propagated in E. coli Top10 cells and used to transfect HEK293T cells.
4. Results
4.1 Mature Cathepsin B Is Expressed in HEK293T Cells
To achieve cathepsin B cleavage-induced Cas stapling, catalytically active cathepsin B needs to be expressed in
the cytosol. Therefore, we investigated the expression of different cathepsin B constructs under different
conditions in HEK293T cells. In addition to wild-type (wt) cathepsin B, we also cloned a truncated and mutated
version of cathepsin B (Δ1-20, D22A, H110A, R116A) and compared protein expression of both constructs in
doxorubicin-treated and untreated conditions.
Figure 2 shows a western blot of the wild-type (wt) version of cathepsin B as well as the truncated and
mutated version of cathepsin B (Δ1-20, D22A, H110A, R116A). Cells of both cathepsin B versions were treated with
500 nM doxorubicin (dox) 24 hours post-transfection and incubated for additional 24 hours. For each condition,
three replicates were blotted. We observed no differences in protein expression levels between the dox-treated
and untreated wt versions of cathepsin B. For the truncated and mutated version of cathepsin B, however, only
the untreated samples showed the corresponding band at approximately 36 kDa expected for this version of
cathepsin B. Additionally, the bands of the truncated and mutated version appeared much weaker than the ones of
the wt, indicating poorer protein expression. The household protein β-tubulin is visible in all samples at
approximately 55 kDa. The wt cathepsin B additionally showed bands for pro-cathepsin B at approximately 42 kDa,
a mature single-chain version of cathepsin B at approximately 33 kDa and a mature double-chain version at
approximately 26 kDa.
4.2 mCherry and eGFP Can be Used as a Reporter System to Measure Cleavage Efficiency
In this experiment, mCherry and eGFP were evaluated as reporters to quantify the efficiency of cathepsin
B-mediated cleavage of Gal4-Linker-VP64 constructs in HEK293T cells.
Figure 3 shows micrographs taken with a fluorescence microscope of three different conditions: the null
control, the negative control and the test sample. Figure 4 shows the corresponding graphs. All samples
were transfected with plasmids encoding eGFP and mCherry. The null control and the negative control were not
transfected with the plasmid encoding cathepsin B. The null control was also not transfected with any of the
plasmids encoding Gal4-Linker-VP64 constructs. The test sample was transfected with 30 ng of the plasmid
encoding cathepsin B and with the plasmid encoding Gal4-GFLG-VP64. As expected, the null control exhibited no
detectable mCherry signal, with corresponding fluorescence intensity measurements at baseline levels. Since no
plasmid encoding a Gal4-V64 construct was transfected, mCherry overexpression via VP64 could not be induced.
However, we observed a high fluorescence intensity for eGFP, indicating that the transfection was successful.
The negative control showed strong signals of both mCherry and eGFP. Therefore, it can be assumed that the
transfection was successful and that our mCherry readout system is functional. Interestingly, there are some
cells which either seem to only express mCherry or eGFP and some cells that show no fluorescence signal. The
test sample showed less eGFP and mCherry fluorescence compared to the negative control. We expected to observe
reduced fluorescence intensity of mCherry, as the transfected cells would express cathepsin B, which cleaves the
linker, thereby decreasing mCherry expression
4.3 The Peptide Linker GFLG Is Cleaved by Cathepsin B in Vivo
We performed a fluorescence readout assay in HEK293T cells to investigate cathepsin B cleavage of different peptide linkers. 24 hours after transfection, we added doxorubicin in a final concentration of 500 nM to the cell supernatant. Figure 5 shows the fluorescence intensity of mCherry for five different peptide linkers (GFLG, FFRG, FRRL, VA, FK). The negative control was not transfected with the plasmid encoding cathepsin B. We investigated two different test conditions, in which we either transfected 30 ng or 60 ng of the plasmid encoding cathepsin B. The fluorescence intensity of mCherry was normalized by the measured fluorescence intensity of eGFP in each condition. Additionally, the values for 30 ng and 60 ng cathepsin B were normalized against the corresponding negative controls. One data point for the VA linker, transfected with 60 ng of the plasmid encoding cathepsin B, was excluded due to severe deviation from the other values. We conducted a two-way analysis of variance (ANOVA) to assess the significance of the observed differences between the negative control and the test conditions for each linker. As the negative control did not contain the plasmid encoding cathepsin B, we expected the measured fluorescence intensity of mCherry to be the highest in these conditions. However, this was only observed for the GFLG and FK linkers. Contrary to our expectations, the fluorescence intensity of the negative control was the lowest out of the three conditions tested for the remaining linkers. It appears that the addition of the plasmid encoding cathepsin B increases mCherry fluorescence intensity when the linker is not cleaved. However, this increase is only significant for the FFRG linker in the 60 ng condition. For the GFLG linker, we observed significant decreases in fluorescence intensity between the negative control and both test conditions, with no difference between the 30 ng and 60 ng conditions. For the FK linker, no significant decreases in fluorescence intensity between the negative control and the test conditions were observed.
5. Conclusion
We overexpressed wild-type cathepsin B in HEK293T cells to study its maturation and activity in a cellular environment. Our findings revealed that cathepsin B successfully matured into its active forms when overexpressed, demonstrating its proteolytic functionality in vivo. By fusing cathepsin B to an SV40 nuclear localization sequence (NLS), we were able to target the protease to the nucleus, enhancing its subcellular localization and precision. Additionally, we showed that the GFLG linker was efficiently cleaved by cathepsin B, confirming its activity on peptide substrates. These results confirm the successful overexpression and activation of cathepsin B in human cells, laying the groundwork for its use in targeted therapeutic strategies and synthetic biology systems.
6. References
Gramespacher, J. A., Stevens, A. J., Nguyen, D. P., Chin, J. W., & Muir, T. W. (2017). Intein Zymogens: Conditional Assembly and Splicing of Split Inteins via Targeted Proteolysis. J Am Chem Soc, 139(24), 8074-8077. https://doi.org/10.1021/jacs.7b02618
Jin, C., EI-Sagheer, A. H., Li, S., Vallis, K. A., Tan, W., & Brown, T. (2022). Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Angewandte Chemie International Edition, 61(13), e202114016. https://doi.org/10.1002/anie.202114016
Lu, J., Wu, T., Zhang, B., Liu, S., Song, W., Qiao, J. & Ruan, H. (2021). Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling 19(60). https://doi.org/10.1186/s12964-021-00741-y
Ruan, H., Hao, S., Young, P., & Zhang, H. (2015). Targeting Cathepsin B for Cancer Therapies. Horiz Cancer Res, 56, 23-40.
Shim, N., Jeon, S. I., Yang, S., Park, J. Y., Jo, M., Kim, J., Choi, J., Yun, W. S., Kim, J., Lee, Y., Shim, M. K., Kim, Y., & Kim, K. (2022). Comparative study of cathepsin B-cleavable linkers for the optimal design of cathepsin B-specific doxorubicin prodrug nanoparticles for targeted cancer therapy. Biomaterials, 289, 121806. https://doi.org/10.1016/j.biomaterials.2022.121806
Wang, J., Liu, M., Zhang, X., Wang, X., Xiong, M., & Luo, D. (2024). Stimuli-responsive linkers and their application in molecular imaging. Exploration, 4(4), 20230027. https://doi.org/10.1002/EXP.20230027
Yoneda,Y. (1997). How Proteins Are Transported from Cytoplasm to the Nucleus. The Journal of Biochemistry, 121(5), 811 – 817. https://doi.org/10.1093/oxfordjournals.jbchem.a021657
Zhong, Y.-J., Shao, L.-H., & Li, Y. (2013). Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int J Oncol, 42(2), 373-383. https://doi.org/10.3892/ijo.2012.1754
None |