Part:BBa_K5439004
FRET-based system for the detection of cadmium
FRET-based sensor system for the detection of cadmium and other heavy metals that consists of phytochelatin synthase from Thlaspi japnonicum (BBa_K5439001),an enzyme that catalyzes the biosynthesis of phytochelatins using as a co-substrate the heavy metal cadmium, flanked by two fluorescent proteins: ECFP (BBa_K1159302)as an energy donor and mVenus (BBa_K1907000)as an energy acceptor.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 895
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 745
Illegal BglII site found at 2154
Illegal XhoI site found at 2176 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 2825
Contents
Usage and Biology
Characterization
Gene Amplification, Assembly and Transformation
The basis for the assembly of this composite part was the previous iteration of the biosensor, ECFP_EryK_mVenusK4447004 (BBa K4447004), which was made up of the 3 genes in a pET-28b backbone. In order to successfully assemble the construct through Gibson Assembly without scars between parts and ensure proper expression of the full fusion construct, we amplified the vector using primers that bind to the ends of both fluorescent proteins and exclude the center EryK gene, obtaining an empty FRET backbone with the homology regions corresponding to the gene of interest, in this case TjPCs. This was the basis for the construction of the other two versions of the biosensor: ECFP_RifMo_mVenus (BBa_K5439003), and ECFP_IpfF_mVenus (BBa_K5439006). This method of assembly effectively makes our system modular and customizable, as the detector gene can be switched out to cover a wider range of contaminants.
Along with amplifying the FRET backbone, we amplified TjPCs (BBa_K5439001)with primers that generate homology regions corresponding to those generated by the backbone amplification. After several optimization cycles, which included optimizing the annealing temperature, number of cycles, and elongation times, we obtained purified fragments to use in the assembly. Figure 2 displays the PCR gels for both the vector and the gene.
With both fragments amplified and purified, we proceeded to assemble the construct through Gibson Assembly (NEB Gibson Assembly Master Mix). Table 1 shows the components used for the assembly reaction. Assembly was done with 100 ng of vector and a 3-fold molar excess of insert, and the reaction was incubated at 50 °C for 1 hour.
Reagent | Quantity |
---|---|
FRET backbone | 2.3 µL |
TjPCs | 0.6 µL |
Gibson Assembly Master Mix | 5 µL |
Nuclease-free water | 2.1 µL |
After the assembly, the next step was to transform the assembled ECFP_TjPCs_mVenus product into E. coli BL21, an expression strain. This step required optimization as well, particularly regarding the efficiency of our competent cells. After optimization, we successfully obtained transformed colonies containing our construct (Figure 3.)
Confirmation of construct insertion through restriction digestion
As a confirmation step, we performed minipreps on transformed colonies and digested the resulting plasmid with Nco I and XhoI , in order to ensure the transformed colonies contained the plasmid with the full construct. Table 2 shows the components used for the restriction digest, while Figure 4 shows the resulting gel, showing bands that correspond to the approximate full length of the ECFP_TjPCs_mVenus construct and the rest of pET28b.
Reagent | Quantity |
---|---|
Restriction Enzyme 10X Buffer | 5 µL |
DNA (1 μg/μL) | 1 µL |
NcoI restriction enzyme | 1 µL |
XhoI restriction enzyme | 1 µL |
BSA (10 μg/μL) | 0.2 µL |
Nuclease-free water | To 20 µL |
Total Volume | 20 µL |
Protein expression and fluorescence validation
References
None |