Composite

Part:BBa_K5335023

Designed by: Ruichen Shen   Group: iGEM24_HZAU-China   (2024-09-28)
Revision as of 18:07, 1 October 2024 by Wangruijia (Talk | contribs)

A part (including a reporter gene) that induces and regulates downstream gene expression by salicyli

Usage and Biology

To sense the salicylic acid signal produced by plants due to disease, we designd salicylic acid sensors. The LysR-type regulator NahR senses salicylic acid signals in the environment.When the salicylic acid concentration reaches a threshold, the Psal promoter is activated to express the HrpR as well as some shRNAs.

The design was verified as shown in Figure 1. 无标题文档


Figure 1. Salicylic acid biosensor circuit
The constructed plasmid vector is illustrated in Figure 2. 无标题文档

Figure 2. Plasmid Vector

Experimental Verification

Transformation

We transformed the recombinant plasmid into E. coli BL21 (DE3) for subsequent functional verification. Before induction with salicylic acid, we verified that NahR could be expressed normally in E. coli BL21(DE3) using using 10% SDS-PAGE electrophoresis.

无标题文档


Figure 2. 10% SDS-PAGE results of NahR expression validation.
M: protein ladder. control:Total protein sample extracted from E. coli BL21(DE3) without plasmid introduction.
1-4: Total protein samples extracted from expanded cultures of four different single colonies that were successfully transformed.

?


     After the expression of NahR was verified, in order to verify the function of NahR and sal promoter, we set up a series of salicylic acid concentration gradients for induction (0 μM,0.1 μM,1 μM,10 μM,10 μM,1000 μM). E. coli BL21(DE3) strain without sal promoter was used as a blank control to explore the leakage expression of sal promoter.

     We found that the expression of fluorescent proteins increased rapidly when SA concentration was between 1-10 μM. We added 200 μL of the induced culture medium inoculated with engineered bacteria to a 96-well plate, and detected the emission light intensity at 486nm using a microplate reader. Five groups of parallel replicates were set for each induced concentration.

无标题文档


Figure 3. Results of fluorescence intensity measured by microplate reader.

A. Changes in fluorescence intensity over time for the salicylic acid-induced groups at different concentrations and the control group.
B. Maximum fluorescence intensity for the salicylic acid-induced groups at different concentrations and the control group.
无标题文档

Figure 4. Comparison of bacterial phenotypes induced by different concentrations of salicylic acid.

     From the above two pictures, it can be seen that sal promoter activity is extremely dependent on salicylic acid concentration, and at the same time sal has low background expression in the absence of salicylic acid.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 786
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 77
    Illegal NgoMIV site found at 618
    Illegal AgeI site found at 1855
  • 1000
    COMPATIBLE WITH RFC[1000]
[edit]
Categories
Parameters
None