Part:BBa_K5089006:Design
CLE-CsgA-LCI
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 226
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
This expression system is codon optimized for expression in E.coli.
Source
CLE is a cutinase from Cryptococcus sp. strain S-2, previously shown to cleave carbon-chain ester substrates [1]. LCI (Liquid Chromatography peak I) is a binding peptide for polystyrene, polypropylene and polylactic acid [2]. CsgA is a protein component of E.coli biofilms, which can be used as an anchor to surface display proteins [3].
References
1. Masaki, K., Kamini, N. R, Ikeda, H., and Iefuji, H. 2005. Cutinase-Like Enzyme from the Yeast Cryptococcus sp. Strain S-2 Hydrolyzes Polylactic Acid and Other Biodegradable Plastics. Appl. and Environ. Microbiol., 71(11), 7548–7550.https://doi.org/10.1128/AEM.71.11.7548-7550.2005
2. Lu, Y., Hintzen, K.-W., Kurkina, T., Ji, Y., and Schwaneberg, U. 2023. Directed Evolution of Material Binding Peptide for Polylactic Acid-specific Degradation in Mixed Plastic Wastes. ACS Catalysis, 13(19), 12746–12754. https://doi.org/10.1021/acscatal.3c02142
3. Fei Li, Luona Ye, Longyu Zhang, Xiaoyan Li, Xiaoxiao Liu, Jiarui Zhu, Huanhuan Li, Huimin Pang, Yunjun Yan, Li Xu, Min Yang, Jinyong Yan, Design of a genetically programmed barnacle-curli inspired living-cell bioadhesive, Materials Today Bio, Volume 14, 2022.