Part:BBa_K243000:Design
Protein domain (active) of the restriction endonuclease FokI
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 487
Design Notes
Planning the design of two different FokI-heterodimers
For the catalytic active Fok partner named Fok_a, the first 1158 nucleotides, i.e. the recognition domain, were deleted and glutamate 490 was switched to lysine (GAA->AAA) as well as isoleucine 538 to lysine (ATC->AAA) for the heterodimer formation
Fig.2 two FokI cleavage domains amino acids 387 to 579. Red: Catalytically active FokI cleavage domain; Cyan: Catalytically inactive FokI cleavage domain; Green: catalytically active aminoacids; Pink: glutamate 490 and isoleucin 538; Blue: glutamin 486 and isoleucin 499.
Modifications of the single vectors to introduce heterodimeric modifications according to [http://www.ncbi.nlm.nih.gov/pubmed/17603475 Miller J et al. Nature Biotechnology 2007]
For exchanging the amino acids we used the Codon usage table in E.coli from Hénaut and Danchin. [http://www.faculty.ucr.edu/~mmaduro/codonusage/codontable.htm E.coli Codon Usage]
Designed with Biobrick pre-and suffix for fusion proteins according to the RFC 25
Commented GenBank file
Source
Source of the protein was the coding region of FokI from the restriction-modification genes of the chromosomal DNA of
[http://www.ncbi.nlm.nih.gov/nuccore/148723?ordinalpos=1&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum Flavobacterium okeanokoites fokIR and fokIM genes]
Planed and designed by Team Freiburg Bioware and synthesized by Mr.Gene.
References
Mary C. Looneya, Laurie S. Morana, William E. Jacka, George R. Feeherya, Jack S. Bennera, Barton E. Slatkoa and Geoffrey G. Wilson;(1989)
Nucleotide sequence of the FokI restriction-modification system: separate strand-specificity domains in the methyltransferase; Gene Vol.80 Issue:2 Pages:193-208
Jeffrey C Miller1, Michael C Holmes1, Jianbin Wang1, Dmitry Y Guschin1, Ya-Li Lee1, Igor Rupniewski1, Christian M Beausejour1,2, Adam J Waite1, Nathaniel S Wang1, Kenneth A Kim1, Philip D Gregory1, Carl O Pabo1,2 & Edward J Rebar (2007);
An improved zinc-finger nuclease architecture for highly specific genome editing; Nature Biotechnology 25, 778 - 785