Composite

Part:BBa_K5317019

Designed by: Vanessa Bruhn   Group: iGEM24_Hannover   (2024-09-22)
Revision as of 15:04, 26 September 2024 by Vanessa09 (Talk | contribs)

CMV-CcpA-mRuby2


Usage and Biology

The regulatory functions of CcpA are modulated by phosphorylation by serine/threonine kinases, which can affect its DNA-binding activity and thus its ability to regulate target genes. This phosphorylation-dependent mechanism enables S. aureus to adapt to different environmental conditions, thereby increasing its survivability and virulence (Liao et al., 2022). We aim to use this mechanism to detect ß-lactams, which can bind to pknB, potentially leading to phosphorylation of ccpA, which could then bind to a specifically engineered promoter. We therefore used an mRuby2 (K3338001)marker gene to detect expression of ccpA protein.

Theoretical Part Design

Placing the ccpA (K3338014)upstream of the reporter gene mRuby2 (K3338001) allows for visualisation of location of ccpA. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 1669

Cloning

We linearized the mammalian expression vector pEGFP-C2 with NheI and BamHI and inserted the both genes ccpA(K33380014) and mRuby2(K3338001), which were fused bevorhand together with matching overhangs. The ccpA gene was acquired from S. aureus. Following the NEBBuilder® user protocol this vector was cloned via HIFI assembly method.

References

Bulock, L. L., Ahn, J., Shinde, D., Pandey, S., Sarmiento, C., Thomas, V. C., Guda, C., Bayles, K. W., & Sadykov, M. R. (2022). Interplay of CodY and CcpA in Regulating Central Metabolism and Biofilm Formation in Staphylococcus aureus. Journal of Bacteriology, 204(7), e00617-21. https://doi.org/10.1128/jb.00617-21

Liao, X., Li, H., Guo, Y., Yang, F., Chen, Y., He, X., Li, H., Xia, W., Mao, Z.-W., & Sun, H. (2022). Regulation of DNA-binding activity of the Staphylococcus aureus catabolite control protein A by copper (II)-mediated oxidation. Journal of Biological Chemistry, 298(3), 101587. https://doi.org/10.1016/j.jbc.2022.101587

[edit]
Categories
Parameters
None