Part:BBa_K5267002
Mammalian MT2 melatonin receptor
GPCRs
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Profile
Name: MTNR1B
Pairs: 1089bp
Origin: Homo sapiens
Properties: GPCRs
Usage and Biology
MT2(melatonin receptor type 2) is an integral membrane protein that is a G protein coupled receptor (GPCR), 7-transmembrane receptor. It is found primarily in the retina and brain. It is thought to participate in light-dependent functions in the retina and may be involved in the neurobiological effects of melatonin.[1]
MT2 has been reported to modulate many physiological processes, especially those related to sleep and circadian rhythm regulation, but also in retina physiology, pain and neuronal and immune functions.
As a class of GPCR, MT2 mainly transmits signals through G protein coupling. MT2 regulates the activities of protein kinase A (PKA) and cAMP response element-binding protein by activating Gαi/oA, inhibiting the intracellular AC activity and reducing the intracellular cAMP concentration. MT2 also inhibits the activity of guanylyl cyclase (GC) and reducing the intracellular cGMP concentration, to regulate cGMP-dependent signaling pathways. MT2 can also regulate gene expression by coupling with Gαq/11 protein to activate PLC, increase intracellular Ca2+ level, and activate PKC pathway to promote downstream signal transduction. [2]
Figure: Overall structures of MT2 (F: inactive state [PDB ID: 6ME6], J: active state [PDB ID: 7VH0]). Overall TM6 movement during receptor activation of MT 2(inactive state: [PDB ID: 6ME9] and active state: [PDB ID: 7VH0]). (G) Ligand binding site of crystal structures of MT 2 (left: [PDB ID: 6ME6], right: [PDB ID: 6ME9]). (K) Ligand binding site of cryo‐EM structure of MT2 [PDB ID: 7VH0]. [3]
Signal transduction features
In terms of transcriptional regulation, melatonin signaling typically inhibits cAMP-responsive element binding (CREB), which activates gene transcription though the ERK pathway. [3]
The figure from Okamoto, H. H., Cecon, E., Nureki, O., Rivara, S., & Jockers, R. (2024) shows melatonin receptor-mediated signal transduction. (Fig.1)
None