Coding

Part:BBa_K4768006

Designed by: BOABEKOA Pakindame   Group: iGEM23_Toulouse-INSA-UPS   (2023-09-14)
Revision as of 13:09, 10 October 2023 by Boabekoa (Talk | contribs)


Split T7 RNA polymerase Cterm conjugated to Trastuzumab with a soluble linker

Part for expression of the split T7 RNA polymerase Cterm conjugated to Trastuzumab with a soluble linker in PURE System

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal XbaI site found at 40
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal XbaI site found at 40
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal XbaI site found at 40
    Illegal NgoMIV site found at 1080
    Illegal AgeI site found at 549
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 21


Introduction
Figure 1: Trastuzumab-SL-T7Cterm structure

The CALIPSO part BBa_K4768006 is composed of the anti-HER2 antibody Trastuzumab fused to the C-terminal subunit of the T7 RNA polymerase (residues 181 to 704) through a soluble linker. This gene is under transcriptional control of an SP6 promoter and T7 terminator.

This part, coupled to the part BBa_K4768005 containing the N-terminal subunit of the T7 RNA polymerase, has been designed to develop a split T7 RNAP-based biosensor capable of recognizing HER-2, an epidermal growth factor that is overexpressed in cancer cells [1], in solution.

The HER2-induced T7 RNAP complex was designed from two existing constructs: a split T7 RNAP-based biosensor for the detection of rapamycin [2] and a split luciferase conjugated with antibodies capable of recognizing HER2[3]. We decided to merge the relevant functionalities of these two constructs and created a new biosensor that transduces HER2 binding to gene expression activation.

Figure 2: Recognition of HER2 extracellular domain induces functional assembly of the split T7 RNA polymerase, which enables gene expression of target gene under control of a T7 promoter.

Construction

The CALIPSO part BBa_K4768006 consists in the C-terminal subunit of the T7 RNA polymerase fused to trastuzumab, an anti-HER2 antibody, on its C-terminal domain through an 8-amino-acid linker of glycine and serine residues. The synthesis of this gBlock was made by IDT. Finally, the gBlock was cloned into the pET21a (+) plasmid with Takara In-Fusion kit (In-Fusion® Snap Assembly Master Mix, 638948) and introduced into Stellar competent cells.

We cloned the gBlock in pET21 by using the following primers (from 5' to 3'):

  • Primer T7-F: agttcctcctttcagatttaggtgacactataggggagac
  • Primer T7-R: gagatctcgatcccgcaaaaaacccctcaagacccg
  • Figure 3Agarose gel electrophoresis or PCR screening on plasmids extracted from 24 clones.

    24 transformants were screened by colony PCR with primers flanking the insertion site within pET21 ( using primers T7-F and T7-R). Unfortunately, no positive transformant was detected (fig. 3).

    Conclusion

    References

    1. Jois et al. 2021. Peptidomimetic Ligand-Functionalized HER2 Targeted Liposome as Nano-Carrier Designed for Doxorubicin Delivery in Cancer Therapy. Pharmaceuticals. 14(3). 221
    2. Pu, J., Zinkus-Boltz, J., Dickinson, B. C. 2017. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biology 13(4). 432-438.
    3. Stains, C. I., Furman, J. L., Porter, J. R., Rajagopal, S., Li, Y., Wyatt, R. T., Ghosh, I. 2010. A General Approach for Receptor and Antibody-Targeted Detection of Native Proteins utilizing Split-Luciferase Reassembly. ACS Chem Biol 5(10). 943-952

    [edit]
    Categories
    Parameters
    None