Part:BBa_K4665005
Usage and Biology
Biomineralization is the process by which living organisms synthesise minerals (Dhami et al., 2013). Microbial calcium carbonate production can proceed through two main metabolic pathways, using urease or carbonic anhydrase (CA) as the catalysts of the reaction (Chaparro-Acuña et al., 2019). However, synthesis through urea hydrolysis produces toxic byproducts which is not observed in the CA catalyzed pathway.
SazCA, derived from the thermophilic bacterium Sulfurihydrogenibium azorense, is the fastest known carbonic anhydrase to date, boasting a kcat/KM value of 3.5 × 108 M−1 s−1 (De Simone et al, 2015). SazCA facilitates the hydration of carbon dioxide to bicarbonate and protons, creating alkaline conditions that aid the formation of calcium carbonate crystals on the extracellular matrix (EPS) of bacterial cells (Fig. 1) (Anbu, et al., 2016).
Enzymatic activity of SazCA:
To measure the activity of the SazCA construct, a colorimetric Wilbur Anderson assay was adapted from Kim & Jo, (2022). The assay measures the ability of carbonic anhydrase to hydrate CO2. Protons released during the hydration reaction cause a decrease in the pH of the solution. Such displacement of H+ can be recorded as a function of time taken for pH to shift from 8.5 to 6.5.
The colorimetric approach taken for the assay indirectly measured the change of pH by recording the colour change of phenol red upon the addition of SazCA. A reaction buffer of 20mM Tris pH. 8.3 (pKa=8.1) and 100µM phenol red (pKa=7.9) was used. Phenol red was chosen as the pH indicator as it shifts colours from yellow to pink over a pH range of 6.3 to 8.3. Total reaction volume was 1mL. 10µL of SazCA-BL21(DE3) culture were added into a cuvette for each reaction. Varying amounts of saturated CO2 aqueous solution (0.279M) were added, volume filled to 1mL with corresponding amounts of reaction buffer. Data collection was performed by UV-Vis spectrophotometry, measuring absorbance change at 570 nm using the kinetics function of the spectrophotometer, recording every 0.1s for 30 minutes. All reactions were performed ice-cold. The blank reaction consisted of 600µL reaction buffer and 400µL CO2 solution. SazCA samples compared to WT BL21. Abs values were obtained as a colorimetric reference for the reaction buffer adjusted for pH at 8.3, 7.5, and 6.5.
Wilbur-Anderson Units (WAU) were calculated according to the following formula:
WAU=(t0-t)/t, where t0 is the time (s) taken for the control to undergo a colour shift, and t is the time taken for SazCA samples to undergo a colour shift.
References
Anbu, P. et al. (March 1, 2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5(250). https://doi.org/10.1186/s40064-016-1869-2
Chaparro-Acuña, S.P., et al. (June, 2018). Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process. Acta Agronómica 67(2). https://doi.org/10.15446/acag.v67n2.66109
De Luca, V. et al. (March 15, 2013). An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorganic & Medicinal Chemistry Letters, 21(6): 1465.1469. https://doi.org/10.1016/j.bmc.2012.09.047
De Simone, G., et al. (May 1, 2015). Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic & Medicinal Chemistry Letters, 1;25(9): 2002-2006. https://doi.org/10.1016/j.bmcl.2015.02.068
Dhami, N.K., et al. ( May 2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5): 707-714. https://doi.org/10.4014/jmb.1212.11087
Jo, B.H. (October 3, 2013). Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2 Sequestration. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.02400-13
Kim, J. H., & Jo, B. H. (2022). A Colorimetric CO2 Hydration Assay for Facile, Accurate, and Precise Determination of Carbonic Anhydrase Activity. Catalysts, 12(11), 1391. MDPI AG. http://dx.doi.org/10.3390/catal12111391
Pan, S. H., & Malcolm, B. A. (2000). Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). BioTechniques, 29(6), 1234–1238. https://doi.org/10.2144/00296st03
Zhu, Y., et.al (December 6, 2021). Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralisation. Synthetic and Systems biotechnology, 7(1): 460-473. https://doi.org/10.1016%2Fj.synbio.2021.11.008
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal PstI site found at 470
Illegal PstI site found at 592 - 12INCOMPATIBLE WITH RFC[12]Illegal PstI site found at 470
Illegal PstI site found at 592 - 21COMPATIBLE WITH RFC[21]
- 23INCOMPATIBLE WITH RFC[23]Illegal PstI site found at 470
Illegal PstI site found at 592 - 25INCOMPATIBLE WITH RFC[25]Illegal PstI site found at 470
Illegal PstI site found at 592
Illegal NgoMIV site found at 54
Illegal AgeI site found at 555 - 1000COMPATIBLE WITH RFC[1000]
None |