Coding

Part:BBa_K4719024

Designed by: Auguste Stankeviciute   Group: iGEM23_Vilnius-Lithuania   (2023-09-18)
Revision as of 20:30, 21 September 2023 by Augustestankeviciute (Talk | contribs)


ClCDA chitin deacetylase
Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Introduction

Vilnius-Lithuania iGEM 2023 team's goal was to create a universal synthetic biology system for Komagataeibacter xylinus for in vivo bacterial cellulose polymer composition modification. Firstly, we chose to produce a cellulose-chitin polymer that would later be deacetylated, creating bacterial cellulose-chitosan. This polymer is an easily modifiable platform when compared to bacterial cellulose. The enhanced chemical reactivity of the bacterial cellulose-chitosan polymer allows for specific functionalizations in the biomedicine field, such as scaffold design. As a second approach, we designed indigo-dyed cellulose that could be used as a green chemistry way to apply cellulose in the textile industry. Lastly, we have achieved a composite of bacterial cellulose and polyhydroxybutyrate (PHB), which is synthesized by K. xylinus.

Usage and Biology

ClCDA is chitin deacetylase isolated from fungus Colletotrichum lindemuthianum. It catalyzes hydrolysis of N-acetamido groups in polymers containing N-acetyl-D-glucosamine monomers. ClCDA requires Co2+ for its catalytical activity.

ClCDA gene consists of two exons and encodes 248 amino acids including extracellular localization signal peptide. Coding sequence excluding signal peptide was cloned into pMAL-p5x-CL-StrepII vector containing MBP (maltose binding protein) sequence in N-terminal and Strep-tag II in C-terminal.


[edit]
Categories
Parameters
None