RNA
miR-1-3p

Part:BBa_K4245006:Experience

Designed by: Akshaya Poonepalle, Michelle Jing, Shivaek Venkateswaran, Daeun Lee, Sahana Ram Narayanan, Richard Jiang, Sishnukeshav Balamurali, Christina Yi, Varnica Basavaraj, Manaswi Gorle, Janet Standeven   Group: iGEM22_Lambert_GA   (2022-09-21)
Revision as of 22:19, 13 October 2022 by Apoonepalle (Talk | contribs)

Applications of BBa_K4245006

Taken from BBa_K4245200
Rolling Circle Transcription (RCA) was successful with this part. The products of RCA are long DNA strands composed of repeating complementary sequences of the used padlock probe. Therefore, one way in which the success of RCA can be determined is by running the rolling circle products (RCP) on an agarose gel. Since a fluorescent band very close to the wells would indicate the presence of an extremely long DNA strand, our RCP was run on a gel. The result was a really long DNA strand close to the well.

Figure 1. Image of gel ran with miRNA-1 RCP product.


By analyzing the results on the gel, our team concluded that a very long strand of DNA, likely the RCP, was produced. The gel exhibited a fluorescent band of DNA very close to the well, which indicates that a long strand of DNA, greater than 1 kB, was produced due to our reaction (see Fig. 1). As a result, we can infer that the RCA reaction allowed the creation of a really long DNA stand -- our RCP.
The RCP was also tested with the split lettuce aptamer. DFHBI-1T and the lettuce right and the modified lettuce left was added to the RCP, and the fluorescence was read on the plate reader.

Figure 2. Graph of split Lettuce reaction with RCP. The values represent the change in fluorescence before and after the reaction with DFHBI-1T took place.


As seen in Figure 2, the increase in fluorescence of the RCP + Lettuce + dye was significantly greater than the controls, which suggests that the split Lettuce was successfully bound to the RCP. In addition, the DFHBI-1T was also successfully bound within the split lettuce secondary folding. According to these results, RCA was successful, and the reaction between the split lettuce and RCP was successful as well.

In addition, to split lettuce, RCA and RCT were also tested with the FAM and BHQ1 labeled linear probes.

As shown by Figure 3, there is a statistically significant decrease in the fluorescent output of a triplicate with FAM Probe, BHQ Probe, and RCP as compared to a triplicate of just FAM tagged Probes. This confirms that we did produce our desired RCP in the RCA reaction and that this mechanism was an effective reporting method for our sensor.

Figure 3. Fluorescent Read of Rolling Circle Product for miRNA-133-3p and miRNA-1-3p


In order to quantify the relationship between miRNA concentration and fluorescence, we further characterized these parts with varying linear probe complement concentrations. There is a negative logarithmic correlation between the complement concentrations and the relative fluorescence units (RFU) (see Fig. 4). Moreover, the data shown above closely parallels the predictive ordinary differential equation (ODE) model (see Fig. 5) correlating complement concentration to RFU. Therefore, the overall data collected depicts an accurate relationship between the miRNA concentration and RFU, further validating that RCA coupled with linear probes are an effective and efficient means of quantifying miRNA concentrations.


Figure 4. Characterization curve for showing a negative logarithmic relationship between RFU from linear DNA probes and miRNA concentrations
Figure 5. Characterization curve for showing a negative logarithmic relationship between RFU from linear DNA probes and miRNA concentrations


In addition, Lambert iGEM also tested linear probes in spiked human serum (where we added miRNA-1 to serum) in order simulate human serum. As shown by Figure 6, there is statistically significant decrease in the fluorescent output of a triplicate with FAM Probe, BHQ Probe, and RCP as compared to a triplicate of just FAM tagged Probes. This confirms that we did produce our desired RCP in the RCA reaction performed on our miRNA-1-3p spiked serum. This further validates that biosensors utilizing RCA coupled with FAM and BHQ-1 linear DNA probes is an effective sensing and reporting mechanism for miR-1-3p.

Figure 6. Linear DNA Probe Fluorescence from Serum Extracted miRNA-1-3p Rolling Circle Amplification. Results show significant decrease in fluorescence, indicating a successful Proof of Concept.


Therefore, RCA created RCP that can be quantified by our chosen reporting mechanisms.

User Reviews

UNIQ48c4b981a0caa383-partinfo-00000001-QINU UNIQ48c4b981a0caa383-partinfo-00000002-QINU