Coding

Part:BBa_K4221004

Designed by: Chenzhang Ma   Group: iGEM22_BJEA_China   (2022-09-27)
Revision as of 07:41, 11 October 2022 by Chenzhang (Talk | contribs) (Detection of fusion protein function)


mOrange

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal EcoRI site found at 43
    Illegal SpeI site found at 619
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 43
    Illegal SpeI site found at 619
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 43
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal EcoRI site found at 43
    Illegal SpeI site found at 619
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal EcoRI site found at 43
    Illegal SpeI site found at 619
  • 1000
    COMPATIBLE WITH RFC[1000]



Usage

Aqueous two-phase separation (ATPS) is a liquid-liquid fractionation technique effectively used for protein separation and purification[1]. When a protein fuses with a hydrophobin, the hydrophobin changes the hydrophobicity of the protein, which causes the protein to aggregate into the surfactants.

Our team is trying to improve traditional ATPS by incorporating a continuous-flow system and replacing fungal hydrophobins with BslA. Using mOrange[2] as target protein can visually observe fluorescent protein (mHoneydew,target protein) showing orange fluorescence in the process of protein expression and two-phase extraction, so as to determine the separation and purification effect.

Biology

Conventional Orange FPs are mainly derived from two parental proteins: Kusabira-Orange (KO) and DsRed. KO was originally isolated from stony coral Fungiaconcinna, which provides bright orange fluorescence to proteins by introducing 10 amino acid residues at its N terminus. Shaner et al. improved mHoneydew and mOrange on the basis of mRFP1, a single molecule variant of DsRed.[3]

Design Consideration

The construct was cloned into a PET28a plasmid and transformed into mOrange-PET28a [2]

The construction includes:

mOrange is fused with BslA with a GS linker(GGTGGTGGCGGCAGCGGCGGAGGCGGTAGT) and TEVlinker(GAAAACCTGTACTTCCAGGGTTCTGGT)

Detection of fusion protein function

After the cells of the recombinant strains were induced, centrifuged, and sonicated, the soluble proteins expressed by the strains were all in the supernatant, We used a comparative experiment to add different droplets to the hydrophobic material and observe the water contact Angle.

Figure-8 a .png
Figure 1.Water contact angle.

Aqueous two-phase separation (ATPS) Testing

We used 1×PBS as a blank control, we added isobutanol to the protein supernatant, shaken and let stand for a few minutes until the two phases were clearly separated.

Figure-9 b .png
Figure 2. ATPS testing.

Reference

[1] E Mustalahti, M Saloheimo, J J. JoensuuIntracellular protein production in Trichodermareesei (Hypocreajecorina) with hydrophobin fusion technology[J]. New Biotechnology, 2013(30)

[2]Aijia J, Xibin N. Construction and Expression of Prokaryotic Expression Vector pET28a-EGFP[J]. JOURNAL OF MICROBIOLOGY, 2011, 31(4):69-73.

[3]Peng W, He P, Shi D, etal. Advances in the research and applications of orange fluorescent protein[J]. Journal of Biotechnology, 2020, 36(6):1060−1068.


[edit]
Categories
Parameters
None