Coding

Part:BBa_K4182007

Designed by: Dan Tan   Group: iGEM22_XJTU-China   (2022-10-10)
Revision as of 15:52, 10 October 2022 by Registry (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Lysis-phi X174

Biosafety is an important consideration when designing engineered bacteria. From the beginning, we designed the bacteria on the premise that it would work in the field soil, so we first needed to consider whether our product could be easily controlled for the time of its operation and whether there were potential risks to soil structure, crop growth, and the balance of soil microbiota. So we designed a "suicide system" at the genetic level to ensure that our engineered bacteria would not pose a potential biosecurity risk to the ecological environment. The suicidal behavior of bacteria is a common phenomenon in nature, which is a programmed death mechanism of prokaryotes. quorum sensing (QS) is a form of communication between bacterial cells. Cells synthesize and secrete signal molecules. When the concentration of signal molecules in the environment reaches a certain threshold, a series of genes are activated, and the bacterial population synchronously realizes certain functional and behavioral changes. A quorum-sensing suicide gene circuit has been constructed, and the systematic study and precise regulation of this gene circuit are of great significance both in theory and application [1]. In addition to population-responsive suicide mechanisms, suicide systems with other regulatory modes can also be designed through synthetic biology. Here, we designed a temperature-responsive cleavage system to achieve temperature-controlled cleavage, that is, cleavage of thermoregulated lysis genes

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
Parameters
None