Part:BBa_K4207017
BYDV toehold switch B2
1. Usage and Biology
Toehold switches are engineered riboregulators that control the expression of a downstream protein coding sequence. They can be designed to detect virtually any sequence. Toehold switches are designed in silico so that they fold into a pre-determined secondary structure. This structure contains a stable stem-loop that sequesters the ribosome binding site (RBS) and the start codon, thus preventing translation. After a specific trigger RNA binds to the binding site of the toehold, the lower part of the stem-loop unfolds, revealing the start codon. A weak stem remains, but this structure unfolds upon ribosome binding to the RBS, starting translation (Green et al., 2017). This toehold switch was designed to detect conserved sequences in the Barley Yellow Dwarf Virus genome. The structural change of the toehold switch is illustrated in Figure 1.
To use this toehold switch, it should be assembled in a construct containing a promoter, the toehold switch, a protein-coding sequence, and optionally a terminator if the sensor is not to be used as linear. To prevent frame-shifting, the toehold switch should be combined with the coding sequence using scarless assembly.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
2. Design
This toehold switch was designed according to the B-series ideal structure from Pardee et al. (2016). This structure was improved from the original toehold switch structure (Green et al., 2014) to reduce translational leakage. We screened the Barley Yellow Dwarf Virus genome for conserved sequences. Each sequence was divided into 36-nucleotide long subsequences and we designed toehold switches designed to specifically bind to the sequence. This toehold switch was designed using the 21-nucleotide linker (Green et al., 2014). We assigned a score for each toehold switch based on the three-parameter fit from Ma et al. (2018) and selected the best-ranking toehold switches for our library.
3. Characterization
Score predicted by our model: 22,28
The expected structures for inactive and active toehold switches were modeled by using NUPACK’s analysis tool (Zadeh et al., 2011). This toehold switch’s inactive structure does not fully correspond to the ideal structure. Therefore, the ability to exhibit trigger-dependent translation is uncertain. Due to the aforementioned factors, the toehold switch may not be as functional as desired.
4. Conclusion
Based on the data provided by our model as well as the visualization of the structures, conclusions about this toehold switches functionality can not be drawn. This toehold switch could be functional in a sensor construct, but more promising candidates could be designed with more optimized design algorithms. Verifying the functionality is necessary to create a viable toehold sensor construct.
5. References
Green, A. A., Kim, J., Ma, D., Silver, P. A., Collins, J. J., & Yin, P. (2017). Complex cellular logic computation using ribocomputing devices. Nature, 548(7665), 117–121. https://doi.org/10.1038/nature23271
Green, A., Silver, P., Collins, J., & Yin, P. (2014). Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 159(4), 925–939. https://doi.org/10.1016/j.cell.2014.10.002
Fornace, M. E., Porubsky, N. J., & Pierce, N. A. (2020). A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed. ACS Synthetic Biology, 9(10), 2665–2678. https://doi.org/10.1021/acssynbio.9b00523
Ma, D., Shen, L., Wu, K., Diehnelt, C. W., & Green, A. A. (2018). Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synthetic Biology, 3(1). https://doi.org/10.1093/synbio/ysy018
Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., Daringer, N. M., Bosch, I., Dudley, D. M., O’Connor, D. H., Gehrke, L., & Collins, J. J. (2016). Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165(5), 1255–1266. https://doi.org/10.1016/j.cell.2016.04.059
Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R., Pierce, M. B., Khan, A. R., Dirks, R. M., & Pierce, N. A. (2010, November 17). NUPACK: Analysis and design of nucleic acid systems. Journal of Computational Chemistry, 32(1), 170–173. https://doi.org/10.1002/jcc.21596
None |