Composite

Part:BBa_K4414024

Designed by: Shiyin Jin   Group: iGEM22_NUDT_CHINA   (2022-09-22)
Revision as of 15:41, 8 October 2022 by Jinshiyin (Talk | contribs)


tetR-GGGSG-LBD

This composite part consists of an N-terminal tetR(BBa_K4414009) domain and a C-terminal NR3C1 LBD(BBa_K4414000) domain fused with a GGGSG linker. It is designed to sense glucocorticoids and activates the transcription of the reporter gene.


Usage and Biology

As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter (BBa_K4016011) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The NR3C1 LBD domain on the C terminal is the ligand�binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression.[1]

Figure1. Schematic figure of BBa_K4414024 and BBa_K4414041

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]



Method

HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414024 and TCE-SEAP(BBa_K4414041). Cells were treated with 10, 50, or 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h or 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol. [2]


Result

Results showed significantly increased SEAP expression in glucocorticoid-treated cells compared to the non-treated control (2-5 folds). A dose dependence was observed within 0-50 nM of glucocorticoid (Figure 2).


Reference

[1] Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Syst. 2018 Jun 27;6(6):655-663.e5. doi: 10.1016/j.cels.2018.05.002. Epub 2018 May 30. PMID: 29859829; PMCID: PMC6023

[2] Yuan H, Bauer CE. PixE promotes dark oligomerization of the BLUF photoreceptor PixD. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11715-9. doi: 10.1073/pnas.0802149105. Epub 2008 Aug 11. PMID: 18695243; PMCID: PMC2575306.

[edit]
Categories
Parameters
None