Coding

Part:BBa_K3396000

Designed by: Huiying Liu   Group: iGEM20_NUDT_CHINA   (2020-10-24)
Revision as of 20:22, 5 October 2022 by Amr Gouda (Talk | contribs)


DocS

The Coch2 module binds DocS (BBa_K3396000) modules constitutively.

Usage and Biology

The DocS[1] module comes from The C. thermocellum scaffoldin and it could recognize and bind tightly to complementary Coh2 modules. The Coh2–DocS pair represents the interaction between two complementary families of protein modules that exhibit divergent specificities and affinities, ranging from one of the highest known affinity constants between two proteins to relatively low-affinity interactions.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Improvement by CU_Egypt team 2022


From literature we found that the yield of expression of Docs is very low so we decided to tag it by GST to increase its stability and the yield. Also, we optimized the sequence to be expressed in E-coli. in addition, there is no characterization for Docs on the registry so we expressed and characterized it by different methods such as Agarose gel electrophoresis, SDS PAGE, transformation efficiency, affinity chromatography, and Bradford assay.

1. Dry Lab

1.1. Modeling

Docs has been tagged with GST and His for purification and increasing the yield by the GST tag. then the model designed by several tools to get the best model.

Docs-GST

                 Figure 1.: Predicted 3D structure of Docs-GST designed by RosettaFold tool.


                                Table 1.: QA scores by SWISS model tool of Docs-GST structure. 



Docs-His

                 Figure 2.: Predicted 3D structure of Docs-His designed by TRrosetta tool.


                                Table 2.: QA scores by SWISS model tool of Docs-His structure. 



Reference

[1] BARAK Y, HANDELSMAN T, NAKAR D, et al. Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction [J]. J Mol Recognit, 2005, 18(6): 491-501.


[edit]
Categories
Parameters
None