Other

Part:BBa_K4390006

Designed by: Maarten van den Ancker   Group: iGEM22_Edinburgh-UHAS_Ghana   (2022-08-07)
Revision as of 23:00, 29 September 2022 by Maarten vandenancker (Talk | contribs)


JUMP N-filler

Usage and Biology

DNA assembly is the cornerstone of synthetic biology, and fast and reliable assembly is a necessity for this. Modular cloning with Type IIS restriction enzymes allows us to quickly assemble many complex multipart constructs from libraries of basic parts. The JUMP vector platform is compatible with the PhytoBrick standard, and vectors are compatible with BioBrick architecture as well as Standard European Vector Architecture (SEVA), and uses single stranded DNA overhangs (fusion sites) generated by BsmBI and BsaI digestion for ordered assembly. There are six different JUMP part types, corresponding to different elements of a transcriptional unit, the Promoter, Ribosome Binding Site (RBS), N-terminus, Open Reading Frame (ORF), C-terminus, and terminator. Figure 1 shows the fusion sites between these part types, and that basic parts can also take up more than one part by adopting a 5’ fusion site of one part and the 3’ fusion site of another.

Figure 1: JUMP fusion sites. Taken from [CITATION]. The second and third lines demonstrate how a basic part can adopt fusion sites for different basic parts and be used in assembly as such


Characterization

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
Parameters
None