Coding

Part:BBa_K4279001

Designed by: Kong Yangyang   Group: iGEM22_SubCat_China   (2022-09-07)
Revision as of 09:46, 26 September 2022 by Lzn0220 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


W1-lipase

W1-lipase

Profile

Name: W1-lipase

Base Pairs: 1854 bp

Origin: Lactiplantibacillus Plantarum, genome

Properties: a lipase for triacylglyceride digestion.

Usage and Biology

BBa_K4279001 is the coding sequence of W1-lipase. Lipase is a primary lipase critical for triacylglyceride digestion in humans and is considered a promising target for the treatment of obesity [1]. Triacylglycerol lipase is the primary lipase secreted by the pancreas, and is responsible for breaking down dietary lipids into unesterified fatty acids (FAs) and monoglycerides (MGs). Medically, lipases are targets for therapeutic intervention in the treatment of obesity. The focus of applied research with lipases has been to exploit the unusual properties of lipolytic systems for the production of chiral pharmaceuticals, improved detergents, and designer fats [2]. Obesity is a medical condition in which excess body fat accumulates to the extent that it may have a negative effect on health, leading to reduced life expectancy and/or increased health problems. Diverse approaches to the prevention and treatment of obesity have been reported [3-5]. W1-lipase is a lipase amplified from Lactiplantibacillus Plantarum (LP1406), which is a gram-positive lactic acid bacteria species and exhibits ecological and metabolic adaptability and is capable of inhabiting a range of ecological niches including fermented foods, meats, plants, and the mammalian gastrointestinal tract. The W1-lipase is made up of 265 aa [6].

Figure 1. The structural modeling of an extremophilic bacterial lipase isolated from saline habitats.

Reference

[1] Paul Joyce, Catherine P. Whitby, Clive A. Prestidge, Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules, Advances in Colloid and Interface Science,2016, 237; 52-75.

[2] Khan I, Nagarjuna R, Dutta JR, Ganesan R Enzyme-Embedded Degradation of Poly(ε-caprolactone) using Lipase-Derived from Probiotic Lactobacillus plantarum. ACS Omega. 2019, 4(2):2844-2852

[3] H.L. Brockman, lipase.Encyclopedia of Biological Chemistry (Second Edition), 2013.

[4]. Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov Today. 2007;12:879–889

[5]. Kim S, Lim SD. Separation and Purification of Lipase Inhibitory Peptide from Fermented Milk by Lactobacillus plantarum Q180. Food Sci Anim Resour. 2020, 40(1):87-95

[6] S.P.S. Chundawat, V. Balan, L. Da costa Sousa, B.E. Dale, Thermochemical pretreatment of lignocellulosic biomass. Bioalcohol Production. 2010, 24-72.


[edit]
Categories
Parameters
None